Log in

Design, synthesis and evaluation of dihydrotriazine derivatives-bearing 5-aryloxypyrazole moieties as antibacterial agents

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

In the present investigation, a series of dihydrotriazine derivatives-bearing 5-aryloxypyrazole moieties were synthesized and their structures were confirmed by different spectral tools. The biological evaluation in vitro revealed that some of the target compounds exerted good antibacterial and antifungal activity in comparison with the reference drugs. Among these novel hybrids, compound 10d showed the most potent activity with minimum inhibitory concentration values (MIC) of 0.5 µg/mL against S. aureus 4220, MRSA 3506 and E. coli 1924 strain. The cytotoxic activity of the compounds 6d, 6m, 10d and 10g was assessed in MCF-7 and HeLa cells. Growth kinetics study showed significant inhibition of bacterial growth when treated with different conc. of 10d. In vitro enzyme study implied that compound 10d exerted its antibacterial activity through DHFR inhibition. Moreover, significant inhibition of biofilm formation was observed in bacterial cells treated with MIC conc. of 10d as visualized by SEM micrographs.

Graphic abstract

Twenty-nine target compounds were designed, synthesized and evaluated in terms of their antibacterial and antifungal activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pasero C, D’Agostino I, De Luca F, Zamperini C, Deodato D, Truglio GI, Sannio F, Del Prete R, Ferraro T, Visaggio D, Mancini A, Guglielmi MB, Visca P, Docquier JD, Botta M (2018) Alkyl-guanidine compounds as potent broad-spectrum antibacterial agents: chemical library extension and biological characterization. J Med Chem 61:9162–9176. https://doi.org/10.1021/acs.jmedchem.8b00619

    Article  CAS  PubMed  Google Scholar 

  2. https://www.cdc.gov/drugresistance/index.html

  3. Overbye KM, Barrett JF (2005) Antibiotics: where did we go wrong? Drug Discov Today 10:45–52. https://doi.org/10.1016/S1359-6446(04)03285-4

    Article  PubMed  Google Scholar 

  4. Yin Z, Whittell LR, Wang Y, Jergic S, Liu M, Harry EJ, Dixon NE, Beck JL, Kelso MJ, Oakley AJ (2014) Discovery of lead compounds targeting the bacterial sliding clamp using a fragment-based approach. J Med Chem 57:2799–2806. https://doi.org/10.1021/jm500122r

    Article  CAS  PubMed  Google Scholar 

  5. Tanitame A, Oyamada Y, Ofuji K, Fujimoto M, Iwai N, Hiyama Y, Suzuki K, Ito H, Kawasaki M, Nagai K, Wachi M, Yamagishi J (2004) Synthesis and antibacterial activity of a novel series of potent DNA gyrase inhibitors. Pyrazole derivatives. J Med Chem 47:3693–3696. https://doi.org/10.1021/jm030394f

    Article  CAS  PubMed  Google Scholar 

  6. Güniz KS, Rollas S, Erdeniz H, Kiraz M, Cevdet EA, Vidin A (2000) Synthesis, characterization and pharmacological properties of some 4-arylhydrazono-2-pyrazoline-5-one derivatives obtained from heterocyclic amines. Eur J Med Chem 35:761–771. https://doi.org/10.1016/s0223-5234(00)90179-x

    Article  Google Scholar 

  7. Penning TD, Talley JJ, Bertenshaw SR, Carter JS, Collins PW, Docter S, Graneto MJ, Lee LF, Malecha JW, Miyashiro JM, Rogers RS, Rogier DJ, Yu SS, Anderson GD, Burton EG, Cogburn JN, Gregory SA, Koboldt CM, Perkins WE, Seibert K, Veenhuizen AW, Zhang YY, Isakson PC (1997) Synthesis and biological evaluation of the 1,5-diarylpyrazole class of cyclooxygenase-2 inhibitors: identification of 4-[5-(4-methylphenyl)-3- (trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide (SC-58635, Celecoxib). J Med Chem 40:1347–1365. https://doi.org/10.1021/jm960803q

    Article  CAS  PubMed  Google Scholar 

  8. Sridhar R, Perumal PT, Etti S, Shanmugam G, Ponnuswamy MN, Prabavathy VR, Mathivanan N (2004) Design, synthesis and anti-microbial activity of 1H-pyrazole carboxylates. Bioorg Med Chem Lett 14:6035–6040. https://doi.org/10.1016/j.bmcl.2004.09.066

    Article  CAS  PubMed  Google Scholar 

  9. Comber RN, Gray RJ, Secrist JA (1992) Acyclic analogues of pyrazofurin: syntheses and antiviral evaluation. Carbohydr Res 216:441–452. https://doi.org/10.1016/0008-6215(92)84179-v

    Article  Google Scholar 

  10. Kompis IM, Islam K, Then RL (2005) DNA and RNA synthesis: antifolates. Chem Rev 105:593–620. https://doi.org/10.1021/cr0301144

    Article  CAS  PubMed  Google Scholar 

  11. Wright DL, Anderson AC (2011) Antifolate agents: a patent review (2006–2010). Expert Opin Ther Pat 21:1293–1308. https://doi.org/10.1517/13543776.2011.587804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hawser S, Lociuro S, Islam K (2006) Dihydrofolate reductase inhibitors as anti-bacterial agents. Biochem Pharmacol 71:941–948. https://doi.org/10.1016/j.bcp.2005.10.052

    Article  CAS  PubMed  Google Scholar 

  13. Zheng CJ, Song MX, Sun LP, Wu Y, Hong L, Piao HR (2012) Synthesis and biological evaluation of 5-aryloxypyrazole derivatives bearing a rhodanine-3-aromatic acid as potential antimicrobial agents. Bioorg Med Chem Lett 22:7024–7028. https://doi.org/10.1016/j.bmcl.2012.09.107

    Article  CAS  PubMed  Google Scholar 

  14. Xu LL, Zheng CJ, Sun LP, Miao J, Piao HR (2012) Synthesis of novel 1,3-diaryl pyrazole derivatives bearing rhodanine-3-fatty acid moieties as potential antibacterial agents. Eur J Med Chem 48:174–178. https://doi.org/10.1016/j.ejmech.2011.12.011

    Article  CAS  PubMed  Google Scholar 

  15. Zhang TY, Zheng CJ, Wu J, Sun LP, Piao HR (2019) Synthesis of novel dihydrotriazine derivatives bearing 1,3-diaryl pyrazole moieties as potential antibacterial agents. Bioorg Med Chem Lett 29:1079–1084. https://doi.org/10.1016/j.bmcl.2019.02.033

    Article  CAS  PubMed  Google Scholar 

  16. Bai XQ, Chen Y, Liu Z, Zhang LH, Zhang TY, Feng B (2019) Synthesis, antimicrobial activities, and molecular docking studies of dihydrotriazine derivatives bearing a quinoline moiety. Chem Biodivers 16:e1900056. https://doi.org/10.1002/cbdv.201900056

    Article  CAS  PubMed  Google Scholar 

  17. Fang XF, Li D, Tangadanchu VKR, Gopala L, Gao WW, Zhou CH (2017) Novel potentially antifungal hybrids of 5-flucytosine and fluconazole: design, synthesis and bioactive evaluation. Bioorg Med Chem Lett 27:4964–4969. https://doi.org/10.1016/j.bmcl.2017.10.020

    Article  CAS  PubMed  Google Scholar 

  18. Gao WW, Rasheed S, Tangadanchu VKR, Sun Y, Peng XM, Cheng Y, Zhang FX, Lin JM, Zhou CH (2017) Design, synthesis and biological evaluation of amino organophosphorus imidazoles as a new type of potential antimicrobial agents. Sci China Chem 60:769–785. https://doi.org/10.1007/s11426-016-9009-6

    Article  CAS  Google Scholar 

  19. Zapotoczna M, O’Neill E, O’Gara JP (2016) Untangling the diverse and redundant mechanisms of Staphylococcus aureus biofilm formation. PLoS Pathog 12:e1005671. https://doi.org/10.1371/journal.ppat.1005671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Soto SM (2013) Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. Virulence 4:223–229. https://doi.org/10.4161/viru.23724

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lam T, Hilgers MT, Cunningham ML, Kwan BP, Nelson KJ (2014) Structure-based design of new dihydrofolate reductase antibacterial agents: 7-(benzimidazol-1-yl)-2,4-diaminoquinazolines. J Med Chem 57:651–668. https://doi.org/10.1021/jm401204g

    Article  CAS  PubMed  Google Scholar 

  22. Oefner C, Bandera M, Haldimann A, Laue H, Schulz H (2009) Increased hydrophobic interactions of iclaprim with Staphylococcus aureus dihydrofolate reductase are responsible for the increase in affinity and antibacterial activity. J Antimicrob Chemother 63:687–698. https://doi.org/10.1093/jac/dkp024

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 81773692); the Science and Technology Department of Jilin Province (No. 20180311016YY), the Department of Education of Jilin Province (No. JJKH20191070KJ); the Health Department of Jilin Province (No. 2018ZC034); and the Doctoral Foundation of Jilin Medical University (No. JYBS2018007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tian-Yi Zhang, Bo Feng or Xue-Kun Liu.

Ethics declarations

Conflict of interest

The authors state no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1526 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, TY., Li, CS., Cui, MY. et al. Design, synthesis and evaluation of dihydrotriazine derivatives-bearing 5-aryloxypyrazole moieties as antibacterial agents. Mol Divers 25, 861–876 (2021). https://doi.org/10.1007/s11030-020-10071-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-020-10071-9

Keywords

Navigation