Log in

Selection of materials and technologies for the electrochemical synthesis of sodium ferrate

  • Published:
Metallurgist Aims and scope

Abstract

The electrochemical synthesis of sodium ferrate for water purification is a promising solution to the problem of clean water. The materials and methods required for the process are considered. Particular attention is paid to the material and technology of obtaining an electrolytic cell that ensures stable and safe production of sodium ferrate. Different recirculation rates and their influence on the final product are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Kashulin NA, Dauval’ter VA, Sandimirov SS, Terent’ev PM, Denisov DB (2011) Influence of nonferrous metallurgy on subarctic freshwater ecosystems. Tsvetn Metal (11):71–75

  2. Reznichenko RO, Karshev KO, Baranov VV (2019) Cleaning of wastewater from ions of heavy metals using a sorbent based on wool-washing waste. In: Proc. All-Russia Sci.-Appl. Conf. on Ecology: Yesterday, Today, Tomorrow, vol 30. Makhachkala, pp 422–426 (October)

    Google Scholar 

  3. Maksimova SA, Avanesyan NM (2022) Pollution of reservoirs with wastewaters as a hazard to environmental safety. In: Proc. 56th Sci-Tech. Conf. on High-School Science in Modern Conditions, vol 24–29. Ulyanovsk, pp 207–208 (January)

    Google Scholar 

  4. Wang J, Chen C (2015) The current status of heavy metal pollution and treatment technology development in China. Envir Technol Rev 4(1):39–53

    Article  CAS  Google Scholar 

  5. Pashkevich MA, Bykova MV (2022) Methodology for thermal desorption treatment of local soil pollution by oil products at the facilities of the mineral resource industry. J Min Inst 253:49–60

    Google Scholar 

  6. Korshunov GI, Safina AM, Karimov AM (2021) Study and analysis of sources of respirable dust at coal mines. Bezopasn Truda V Promyshl 10:65–70

    Google Scholar 

  7. Korshunov GI, Karimov AM, Magomedov GS, Tyul’kin SA (2023) Reduction of the anthropogenic impact of respirable dust on the quarry personnel during large-scale blasting. Gorn Inform-analit Byull 7:132–144

    Google Scholar 

  8. Yu. Piirainen V, Barinkova AA (2023) Development of composite materials based on red mud. Obogashch Rud 3:37–43

    Google Scholar 

  9. Cheremisina O, Litvinova T, Sergeev V, Ponomareva M, Mashukova J (2021) Application of the organic waste-based sorbent for the purification of aqueous solutions. Water 13(21):3101

    Article  CAS  Google Scholar 

  10. Sozina ID, Danilov AS (2023) Microbiological remediation of oil-contaminated soils. J Min Inst (260):297–312

  11. Alsheyab M, Jiang JQ, Stanford C (2009) On-line production of ferrate with an electrochemical method and its potential application for wastewater treatment—A review. J Environ Manag 90(3):1350–1356

    Article  CAS  Google Scholar 

  12. Liu K, Yi Y, Zhang N (2021) Anodic oxidation produces active chlorine to treat oilfield wastewater and prepare ferrate (VI). J Water Process Eng 41:101998

    Article  Google Scholar 

  13. Shulaev NS, Pryanichnikova VV, Kadyrov RR (2021) Regularities of electrochemical cleaning of oil-contaminated soils. Zap Gorn Inst 252:937–946

    Google Scholar 

  14. Orekhova AI, Khalemskii AM, Sherstobitova TM, Kogan BS (2013) Purification of wastewaters of the Urals using new oxidizing agent. Tsvetn Metall (4):64–67

  15. Yingxin W, Xueting Z, Honglong B, Bingyan L, Laisheng L, Qiangqiang S, Siya F (2015) Preparation of potassium ferrate and its effectiveness on the removal of As(III) and Pb(II)[J. J South China Norm Univ 47(4):80–87 (Natural Science Edition)

    Google Scholar 

  16. Prucek R et al (2015) Ferrate (VI)-prompted removal of metals in aqueous media: mechanistic delineation of enhanced efficiency via metal entrenchment in magnetic oxides. Environ Sci Techn 49(4):2319–2327

    Article  CAS  Google Scholar 

  17. Dong S, Mu Y, Sun X (2019) Removal of toxic metals using ferrate (VI): a review. Water Sci Techn 80(7):1213–1225

    Article  CAS  Google Scholar 

  18. Talaiekhozani A, Talaei MR, Rezania S (2017) An overview on production and application of ferrate (VI) for chemical oxidation, coagulation and disinfection of water and wastewater. J Environ Chem Eng 5(2):1828–1842

    Article  CAS  Google Scholar 

  19. Korotaeva AE, Pashkevich MA (2021) Spectrum survey data application in ecological monitoring of aquatic vegetation. Min Inf Anal Bull 5:231–244

    Article  Google Scholar 

  20. Wang Z, Shi J, Zhong C (2021) Influence of jarosite precipitation on iron balance in heap bioleaching at Monywa Coppermine. J Min Inst 247:102–113

    Google Scholar 

  21. Wang Y et al (2022) Potassium ferrate enhances ozone treatment of pharmaceutical wastewaters: Oxidation and catalysis. J Water Process Eng 49:103055

    Article  Google Scholar 

  22. Czolderova M et al (2018) 3D printed polyvinyl alcohol ferrate (VI) capsules: effective means for the removal of pharmaceuticals and illicit drugs from wastewater. Chem Eng J 349:269–275

    Article  CAS  Google Scholar 

  23. Mytsyk EI, Smirnov AS (2018) Studying the technology of purification of toxic printing wastewaters with a sodium ferrate solution. Nedelya Nauki Spbpu: 80–83

  24. Arakcheev EN et al (2017) Experimental justification of the expediency of disinfecting and purifying water and runoffs with sodium ferrate. Gigiena I Sanit 96(3):216–222

    Article  Google Scholar 

  25. Diaz М et al (2019) Unravelling the mechanisms controlling the electrogeneration of ferrate using four iron salts in boron-doped diamond electrodes. J Electroanal Chem 854:113501

    Article  CAS  Google Scholar 

  26. Sun X et al (2018) Electrochemical synthesis of ferrate (VI) using sponge iron anode and oxidative transformations of antibiotic and pesticide. J Hazard Mater 344:1155–1164

    Article  CAS  PubMed  Google Scholar 

  27. Yu. Andreyev S et al (2020) Studying the electrochemical synthesis of sodium ferrate in the anode compartments of an electrolytic membrane cell. Reg Arkhitekt Stroit (2):142–149

  28. Shulga Е et al (2020) Fused filament fabricated polypropylene composite reinforced by aligned glass fibers. materials 13(16):3442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. El Kateb M et al (2022) Ferrate (VI) pre-treatment and subsequent electrochemical advanced oxidation processes: recycling iron for enhancing oxidation of organic pollutants. Chem Eng J 431:134–177

    Article  Google Scholar 

  30. Denvir A, Pletcher D (1996) Electrochemical generation of ferrate part 2: influence of anode composition. J Appl Electrochem 26(8):823–827

    Article  CAS  Google Scholar 

  31. Ding L, Liang H, Li X (2012) Oxidation of CH3SH by in situ generation of ferrate (VI) in aqueous alkaline solution for odour treatment. Sep Purif Techn 91:117–124

    Article  CAS  Google Scholar 

  32. Lapicque F, Valentin G (2002) Direct electrochemical preparation of solid potassium ferrate. Electrochem Communic 4(10):764–766

    Article  CAS  Google Scholar 

  33. Ren Y et al (2008) Usage of anisomeric square pulse with fluctuating frequency for electrochemical generation of in CS–CMC bipolar membrane electrolysis cell. Chem Eng Process Process Intensif 47(4):708–715

    Article  CAS  Google Scholar 

  34. De Koninck M, Brousse T, Belanger D (2003) The electrochemical generation of ferrate at pressed iron powder electrodes: effect of various operating parameters. Electrochim Acta 48(10):1425–1433

    Article  Google Scholar 

  35. Denvir A, Pletcher D (1996) Electrochemical generation of ferrate part I: dissolution of an iron wool bed anode. J Appl Electrochem 26:815–822

    Article  CAS  Google Scholar 

  36. El Maghraoui A et al (2015) Process for the synthesis of ferrate (VI) Alkali metal dry. Adv Mater Phys Chem 5(1):10

    Article  Google Scholar 

  37. El Maghraoui A et al (2015) Effect of degree of CIO hypochlorite on the wet synthesis of ferrate (VI). Adv Mater Phys Chem 5(4):133

    Article  Google Scholar 

  38. Jiang JQ, Stanford C, Petri M (2018) Practical application of ferrate (VI) for water and wastewater treatment-Site study’s approach. Water-energy Nexus 1(1):42–46

    Article  Google Scholar 

  39. Walz KA et al (2006) Stabilization of iron (VI) ferrate cathode materials using nanoporous silica coatings. J Electrochem Soc 153(6):A1102

    Article  CAS  Google Scholar 

  40. Diaz M et al (2021) Towards in situ electro-generation offerrate for drinking water treatment: a comparison of three low-cost sacrificial iron electrodes. J Electroanal Chem 880:114897

    Article  CAS  Google Scholar 

  41. He W et al (2006) The rapid electrochemical preparation of dissolved ferrate (VI): Effects of various operating parameters. Electrochim Acta 51(10):1967–1973

    Article  CAS  Google Scholar 

  42. Arakcheev EN (2017) Integrated equipment and processes of industrial production of Anolyte and Ferrate. SPbPU, St. Petersburg (Author’s Abstract of PhD Thesis)

    Google Scholar 

  43. Pryakhin EI, Troshina EY (2023) Study of technological and operational features of high-temperature-resistant composite films for laser marking of parts made of ferrous alloys. Chern Met 4:74–80

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ani P. Petkova.

Additional information

Translated from Metallurg, No. 3, pp. 107–113, March, 2024. Russian DOI: https://doi.org/10.52351/00260827_2024_3_107

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petkova, A.P., Gorbatyuk, S.M., Sharafutdinova, G.R. et al. Selection of materials and technologies for the electrochemical synthesis of sodium ferrate. Metallurgist (2024). https://doi.org/10.1007/s11015-024-01747-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11015-024-01747-w

Keywords

UDC

Navigation