Log in

Stochastic vibration analysis of a nonlinear oscillator with symmetric viscoelastic impact protection under wide-band noise excitations

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

To reduce the damage to the structure of mechanical vibration devices caused by the vibration, the end stops impact protection structure is often introduced in the design of the devices, which will inevitably occur nonclassical impact phenomenon. In this manuscript, the stochastic responses of a class of nonlinear impact protection oscillators are subjected to the excitation of wide-band noise. To better describe the changes before and after the impact protection, a stochastic differential equation with an indicator function is used to describe those changes. Then the Fourier series expansion of the indicator function is used to derive the Fokker–Planck–Kolmogorov (FPK) equation for the total energy of the system based on the Markov approximation. Then we obtain the stationary probability density functions (PDFs) of the total energy and the state variable. Finally, two different wide-band noises driven nonlinear Duffing-typed oscillations with end-stop impact protection blue are given as examples to verify all the proposed methods. The results show that the introduction of viscoelastic impact protection will increase the probability of oscillator vibration near its stable point, which means that the maximum displacement of the system will be effectively controlled. The results of this paper have some valuable references to guide the optimization designs, systemic integration, and vibration reliability of the Vibro-impact dynamical systems, especially the symmetric viscoelastic impact system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Babitsky VI (1998) Theory of vibro-impact systems and applications. Springer-Verlag, Berlin

    Book  MATH  Google Scholar 

  2. Ibrahim RA (2009) Vibro-impact dynamics: modeling, map** and applications, Lecture Notes in Applied and Computational Mechanics 43

  3. Renji K (2021) Dynamic responses of clearance-type non-linear systems subjected to base harmonic excitation and their experimental verification. J. Vib, Control

    Google Scholar 

  4. Dimentberg MF, Iourtchenko DV (2004) Random vibration with impact: a review. Nonlinear Dyn 36:229–254

    Article  MathSciNet  MATH  Google Scholar 

  5. Iourtchenko DV, Song LL (2006) Numerical investigation of a response probability density function of stochastic vibro-impact systems with inelastic impacts. Int J Nonliner Mech 41:447–455

    Article  MATH  Google Scholar 

  6. Wen G, Xu H, **ao L, **e X, Chen Z, Wu X (2012) Experimental investigation of a two-degree-of-freedom vibro-impact system. Int J Bifur Chaos 22:1250110

    Article  Google Scholar 

  7. Nordmark AB (1991) Non-periodic motion caused by grazing incidence in an impact oscillator. J Sound Vib 145:279–297

    Article  Google Scholar 

  8. Peterka F, Kotera T, Cipera S (2004) Explanation of appearance and characteristics of intermittency chaos of the impact oscillator. Chaos Solitons Fract 19:1251–1259

    Article  MATH  Google Scholar 

  9. Tian R, Zhao Z, Yang X, Zhou Y (2017) Subharmonic bifurcation for nonsmooth oscillator. Int. J. Bifurc Chaos 27:17501631

    Article  MathSciNet  Google Scholar 

  10. Yue X, Xu W, Wang L (2013) Global analysis of boundary and interior crises in an elastic impact oscillator. Commun Nonlinear SCI 18:3567–3574

    Article  MathSciNet  MATH  Google Scholar 

  11. Wu KQ, Yu TX (2001) Simple dynamic models of elastic-plastic structures under impact. Int J Impact Eng 25:735–754

    Article  Google Scholar 

  12. Ruan HH, Yu TX (2003) Local deformation models in analyzing beam-on-beam collisions. Int J Mech Sci 45:397–423

    Article  MATH  Google Scholar 

  13. Hao Z, Cao Q, Wiercigroch M (2016) Two-sided dam** constraint control strategy for high-performance vibration isolation and end-stop impact protection. Nonlinear Dyn 86:2129–2144

    Article  MathSciNet  MATH  Google Scholar 

  14. Sun M, Hu W, Liu J, Chen J (2021) Steady-state responses of mechanical system attached to non-smooth vibration absorber with piecewise dam** and stiffness. Meccanica 56:275–285

    Article  MathSciNet  Google Scholar 

  15. Andreaus U, Casini P (2000) Dynamics of SDOF oscillators with hysteretic motion-limiting stop. Nonlinear Dyn 22:145–164

    Article  MathSciNet  MATH  Google Scholar 

  16. Andreaus U, Placidi L, Rega G (2011) Soft impact dynamics of a cantilever beam: equivalent SDOF model versus infinite-dimensional system. P I Mech Eng C-J Mech 225(1989–1996):2444–2456

    Article  Google Scholar 

  17. Sun X, Hong Z, Meng W et al (2018) Primary resonance analysis and vibration suppression for the harmonically excited nonlinear suspension system using a pair of symmetric viscoelastic buffers. Nonlinear Dyn 94:1243–1265

    Article  Google Scholar 

  18. Zhu WQ, Lu MQ, Wu QT (1993) Stochastic jump and bifurcation of a duffing oscillator under narrow-band excitation. J Sound Vib 165:285–304

    Article  MATH  Google Scholar 

  19. Xu Y, Gu R, Zhang H et al (2011) Stochastic bifurcations in a bistable Duffing-Van der Pol oscillator with colored noise. Phys Rev E 83:056215

    Article  Google Scholar 

  20. Xu Y, Feng J, Li J et al (2013) Stochastic bifurcation for a tumor-immune system with symmetric L\(\acute{e}\)vy noise. Phys A 392:4739–4748

    Article  MathSciNet  MATH  Google Scholar 

  21. Kumar P, Narayanan S, Gupta S (2016) Stochastic bifurcations in a vibro-impact Duffing-Van der Pol oscillator. Nonlinear Dyn 85:439–452

    Article  MathSciNet  Google Scholar 

  22. Zhang X, Xu Y, Liu Q et al (2020) Rate-dependent tip**-delay phenomenon in a thermoacoustic system with colored noise. Sci China Technol Sci 63:2315–2327

    Article  Google Scholar 

  23. Xu Y, Li J, Feng J, Zhang H, Xu W, Duan J (2013) L\(\acute{e}\)vy noise-induced stochastic resonance in a bistable system. Eur. Phys, J. B, p 86

    Google Scholar 

  24. Xu P, ** Y, **ao S (2017) Stochastic resonance in a delayed triple-well potential driven by correlated noises. Chaos 27:113109

    Article  MathSciNet  Google Scholar 

  25. Yao Y, Ma J (2018) Weak periodic signal detection by sine-Wiener-noise-induced resonance in the FitzHugh-Nagumo neuron. Cogn Neurodynam 12:343–349

    Article  Google Scholar 

  26. Mei R, Xu Y, Li Y, Kurths J (2021) Characterizing stochastic resonance in a triple cavity. Phil Trans R Soc A 379:20200230

    Article  MathSciNet  Google Scholar 

  27. Feng Q, He H (2003) Modeling of the mean Poincar\({\acute{\rm e}}\) map on a class of random impact oscillators. Eur J Mech - A/Solids 22:267–281

    Article  MathSciNet  Google Scholar 

  28. Gan C, Hua L (2011) Stochastic dynamical analysis of a kind of vibro-impact system under multiple harmonic and random excitations. J Sound Vib 330:2174–2184

    Article  Google Scholar 

  29. Li C, Xu W, Yue X (2014) Stochastic response of a vibro-impact system by path integration based on generalized cell map** method. Int J Bifurc Chaos 24:1450129

    Article  MathSciNet  MATH  Google Scholar 

  30. Huang D, Xu W, Liu D, Han Q (2016) Multi-valued responses of a nonlinear vibro-impact system excited by random narrow-band noise. J Vib Control 22:2907–2920

    Article  MathSciNet  MATH  Google Scholar 

  31. Dimentberg M, Yurchenko D, Vanewijk O (1998) Subharmonic response of a quasi-isochronous vibro-impact system to a randomly disordered periodic excitation. Nonlinear Dyn 17:173–186

    Article  Google Scholar 

  32. Feng J, Wei X, Rui W (2008) Stochastic responses of vibro-impact duffing oscillator excited by additive Gaussian noise. J Sound Vib 309:730–738

    Article  Google Scholar 

  33. Gu X, Zhu W (2014) A stochastic averaging method for analyzing vibro-impact sys- tems under gaussian white noise excitations. J Sound Vib 333:2632–2642

    Article  Google Scholar 

  34. Liu D, Li M, Li J (2018) Probabilistic response and analysis for a vibro-impact system driven by real noise. Nonlinear Dyn 91:1261–1273

    Article  Google Scholar 

  35. Liu D, Li J, Meng Y (2019) Probabilistic response analysis for a class of nonlinear vibro-impact oscillator with bilateral constraints under colored noise excitation. Chaos Solitons Fract. 122:179–188

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhu HT (2017) Non-stationary response of a van der Pol-Duffing oscillator under Gaussian white noise. Meccanica 52:833–847

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhu HT (2014) Probabilistic solution of vibro-impact stochastic Duffing systems with a unilateral non-zero offset barrier. Phys A 410:335–344

    Article  MathSciNet  MATH  Google Scholar 

  38. Xu M, Wang Y, ** XL et al (2013) Random response of vibro-impact systems with inelastic contact. Int J Nonlin Mech 52:26–31

    Article  Google Scholar 

  39. Xu M (2018) First-passage failure of linear oscillator with non-classical inelastic impact. Appl Math Model 54:284–297

    Article  MathSciNet  MATH  Google Scholar 

  40. Qian J, Chen L (2021) Random vibration of SDOF vibro-impact oscillators with restitution factor related to velocity under wide-band noise excitations. Mech Syst Signal Pr 147:107082

    Article  Google Scholar 

  41. Peng Y, Li J (2011) Exceedance probability criterion based stochastic optimal polynomial control of Duffing oscillators. Int J Non-Linear Mech 46(2):457–469

    Article  Google Scholar 

  42. Peng YR, Ghanem J (2013) Generalized optimal control policy for stochastic optimal control of structures. Struct Control Health Monit 20:67–89

    Article  Google Scholar 

  43. Wu X, Griffin MJ (1996) Towards the standardization of a testing method for the end-stop impacts of suspension seats. J Sound Vib 192:307–319

    Article  Google Scholar 

  44. Wu X, Griffin MJ (1998) The influence of end-stop buffer characteristics on the severity of suspension seat end-stop impacts of suspension seats. J Sound Vib 215:989–996

    Article  Google Scholar 

  45. Zhong S, Chen Y (2009) Bifurcation of piecewise-linear nonlinear vibration system of vehicle suspension. Appl Math Mech 30:677–684

    Article  MATH  Google Scholar 

  46. Huang Q, **e WC (2008) Stability of SDOF linear viscoelastic system under the excitation of wideband noise. ASME J Appl Mech 75(2):021012

    Article  Google Scholar 

  47. Li QC, Lin YK (1995) New stochastic theory for bridge stability in turbulent flow. ASME J Appl Mech 119(1):113–127

    Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China under Grant Nos. 11972019 and 12072264, and the Research Project Supported by Shanxi Scholarship Council of China No. 2020-122.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Di Liu or Yong Xu.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Lv, Z., Liu, D. et al. Stochastic vibration analysis of a nonlinear oscillator with symmetric viscoelastic impact protection under wide-band noise excitations. Meccanica 57, 1491–1503 (2022). https://doi.org/10.1007/s11012-022-01505-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-022-01505-9

Keywords

Navigation