Log in

Network pharmacology and bioinformatics approach reveals the therapeutic mechanism of action of curcumin in Alzheimer disease

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Curcumin is a natural anti-inflammatory and antioxidant substance which plays a major role in reducing the amyloid plaques formation, which is the major cause of Alzheimer’s disease (AD). Consequently, a methodical approach was used to select the potential protein targets of curcumin in AD through network pharmacology. In this study, through integrative methods, AD targets of curcumin through SwissTargetPrediction database, STITCH database, BindingDB, PharmMapper, Therapeutic Target Database (TTD), Online Mendelian Inheritance in Man (OMIM) database were predicted followed by gene enrichment analysis, network construction, network topology, and docking studies. Gene ontology analysis facilitated identification of a list of possible AD targets of curcumin (74 targets genes). The correlation of the obtained targets with AD was analysed by using gene ontology (GO) pathway enrichment analyses and Kyoto Encyclopaedia of Genes and Genomes (KEGG). We have incorporated the applied network pharmacological approach to identify key genes. Furthermore, we have performed molecular docking for analysing the mechanism of curcumin. In order to validate the temporospatial expression of key genes in human central nervous system (CNS), we searched the Human Brain Transcriptome (HBT) dataset. We identified top five key genes namely, PPARγ, MAPK1, STAT3, KDR and APP. Further validated the expression profiling of these key genes in publicly available brain data expression profile databases. In context to a valuable addition in the treatment of AD, this study is concluded with novel insights into the therapeutic mechanisms of curcumin, will ease the treatment of AD with the clinical application of curcumin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data used in the current study available from the corresponding author on reasonable request.

References

  • Abdul-Hammed M, Adedotun IO, Olajide M, Irabor CO, Afolabi TI, Gbadebo IO, Rhyman L, Ramasami P (2022) Virtual screening, ADMET profiling, PASS prediction, and bioactivity studies of potential inhibitory roles of alkaloids, phytosterols, and flavonoids against COVID-19 main protease (M(pro)). Nat Prod Res 36:3110–3116

    Article  CAS  PubMed  Google Scholar 

  • Ali S, Malik MZ, Singh SS, Chirom K, Ishrat R, Singh RKB (2018) Exploring novel key regulators in breast cancer network. PLoS ONE 13:e0198525

    Article  PubMed  PubMed Central  Google Scholar 

  • Alzheimer’s Association (2018) 2018 Alzheimer’s disease facts and figures. Alzheimer’s Dement 14(3):367–429

  • Assenov Y, Ramírez F, Schelhorn SE, Lengauer T, Albrecht M (2008) Computing topological parameters of biological networks. Bioinformatics 24:282–284

    Article  CAS  PubMed  Google Scholar 

  • Barshir R, Fishilevich S, Iny-Stein T, Zelig O, Mazor Y, Guan-Golan Y, Safran M, Lancet D (2021) GeneCaRNA: A Comprehensive Gene-centric Database of Human Non-coding RNAs in the GeneCards Suite. J Mol Biol 433:166913

    Article  CAS  PubMed  Google Scholar 

  • Berger SI, Iyengar R (2009) Network analyses in systems pharmacology. Bioinformatics 25:2466–2472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bojarska J et al (2020) A supramolecular approach to structure-based design with a focus on synthons hierarchy in ornithine-derived ligands: review, synthesis, experimental and in silico studies. Molecules 25(5):1135

  • Bordji K, Becerril-Ortega J, Nicole O, Buisson A (2010) Activation of extrasynaptic, but not synaptic, NMDA receptors modifies amyloid precursor protein expression pattern and increases amyloid-ß production. J Neurosci 30:15927–15942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandes U (2001) A faster algorithm for betweenness centrality. J Math Sociol 25:163–177

    Article  Google Scholar 

  • Calabrese C, Gregory WL, Leo M, Kraemer D, Bone K, Oken B (2008) Effects of a standardized Bacopa monnieri extract on cognitive performance, anxiety, and depression in the elderly: a randomized, double-blind, placebo-controlled trial. J Altern Complement Med 14:707–713

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Chen D, Liu S, Yuan T, Guo J, Fang L, Du G (2019) Systematic elucidation of the mechanism of genistein against pulmonary hypertension via network pharmacology approach. Int J Mol Sci 20(22):5569

  • Daina A, Zoete V (2016) A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem 11:1117–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717

    Article  PubMed  PubMed Central  Google Scholar 

  • Dallemagne P, Rochais C (2020) Facing the complexity of Alzheimer’s disease. Future Med Chem 12:175–177

    Article  CAS  PubMed  Google Scholar 

  • Di Domenico F, Tramutola A, Perluigi M (2016) Cathepsin D as a therapeutic target in Alzheimer’s disease. Expert Opin Ther Targets 20:1393–1395

    Article  PubMed  Google Scholar 

  • Ding Z, Kihara D (2019) Computational identification of protein-protein interactions in model plant proteomes. Sci Rep 9:8740

    Article  PubMed  PubMed Central  Google Scholar 

  • Dou KX, Tan MS, Tan CC, Cao XP, Hou XH, Guo QH, Tan L, Mok V, Yu JT (2018) Comparative safety and effectiveness of cholinesterase inhibitors and memantine for Alzheimer’s disease: a network meta-analysis of 41 randomized controlled trials. Alzheimers Res Ther 10:126

    Article  PubMed  PubMed Central  Google Scholar 

  • Farooqui AA, Farooqui T, Madan A, Ong JH, Ong WY (2018a) Ayurvedic Medicine for the Treatment of Dementia: Mechanistic Aspects. Evid Based Complement Alternat Med 2018:2481076

    Article  PubMed  PubMed Central  Google Scholar 

  • Farooqui A, Tazyeen S, Ahmed MM, Alam A, Ali S, Malik MZ, Ali S, Ishrat R (2018b) Assessment of the key regulatory genes and their Interologs for Turner Syndrome employing network approach. Sci Rep 8:10091

    Article  PubMed  PubMed Central  Google Scholar 

  • Franchi C, Lucca U, Tettamanti M, Riva E, Fortino I, Bortolotti A, Merlino L, Pasina L, Nobili A (2011) Cholinesterase inhibitor use in Alzheimer’s disease: the EPIFARM-Elderly Project. Pharmacoepidemiol Drug Saf 20:497–505

    Article  CAS  PubMed  Google Scholar 

  • Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749

    Article  CAS  PubMed  Google Scholar 

  • Govindarajulu M, Pinky PD, Bloemer J, Ghanei N, Suppiramaniam V, Amin R (2018) Signaling Mechanisms of Selective PPARγ Modulators in Alzheimer’s Disease. PPAR Res 2018:2010675

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo T, Noble W, Hanger DP (2017) Roles of tau protein in health and disease. Acta Neuropathol 133:665–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hefter D, Ludewig S, Draguhn A, Korte M (2020) Amyloid, APP, and Electrical Activity of the Brain. Neuroscientist 26:231–251

    Article  PubMed  Google Scholar 

  • Jahrling JB, Hernandez CM, Denner L, Dineley KT (2014) PPARγ recruitment to active ERK during memory consolidation is required for Alzheimer’s disease-related cognitive enhancement. J Neurosci 34:4054–4063

    Article  PubMed  PubMed Central  Google Scholar 

  • Jarvis CI, Goncalves MB, Clarke E, Dogruel M, Kalindjian SB, Thomas SA, Maden M, Corcoran JP (2010) Retinoic acid receptor-α signalling antagonizes both intracellular and extracellular amyloid-β production and prevents neuronal cell death caused by amyloid-β. Eur J Neurosci 32:1246–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang J, Müller-Hill B (1990) Differential splicing of Alzheimer’s disease amyloid A4 precursor RNA in rat tissues: Pre A4(695) mRNA is predominantly produced in rat and human brain. Biochem Biophys Res Commun 166:1192–1200

    Article  CAS  PubMed  Google Scholar 

  • Keil JM, Qalieh A, Kwan KY (2018) Brain Transcriptome Databases: A User’s Guide. J Neurosci 38:2399–2412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JW et al (2021) Identification of cathepsin D as a plasma biomarker for Alzheimer’s disease. Cells 10(1):138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT (2018) Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement (NY) 4:575–590

    Article  Google Scholar 

  • Kirouac L, Rajic AJ, Cribbs DH, Padmanabhan J (2017) Activation of Ras-ERK signaling and GSK-3 by amyloid precursor protein and amyloid beta facilitates neurodegeneration in Alzheimer’s disease. Eneuro 4(2)

  • Kononenko O, Baysal O, Holmes R, Godfrey MW (2014) Mining modern repositories with elasticsearch. In Proceedings of the 11th Working Conference on Mining Software Repositories, 328–31. Hyderabad, India: Association for Computing Machinery

  • Koopmans F et al (2019) SynGO: an evidence-based, expert-curated knowledge base for the synapse. Neuron 103:217–34.e4

  • Kuhn M, Szklarczyk D, Franceschini A, von Mering C, Jensen LJ, Bork P (2012) STITCH 3: zooming in on protein-chemical interactions. Nucleic Acids Res 40:D876–D880

    Article  CAS  PubMed  Google Scholar 

  • Kuleshov MV et al (2016) Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 44:W90–W97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM (2001) The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci 21:8370–8377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK (2007) BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res 35:D198-201

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Zhou Q, He J, Jiang Z, Peng C, Tong R, Shi J (2020) Recent advances in the development of protein-protein interactions modulators: mechanisms and clinical trials. Signal Transduct Target Ther 5:213

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehla J, Gupta P, Pahuja M, Diwan D, Diksha D (2020) Indian medicinal herbs and formulations for Alzheimer’s disease, from traditional knowledge to scientific assessment. Brain Sci 10(12):964

  • Menon VP, Sudheer AR (2007) Antioxidant and anti-inflammatory properties of curcumin. Adv Exp Med Biol 595:105–125

    Article  PubMed  Google Scholar 

  • Monday HR, Castillo PE (2017) Closing the gap: long-term presynaptic plasticity in brain function and disease. Curr Opin Neurobiol 45:106–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newman ME, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E Stat Nonlin Soft Matter Phys 69:026113

    Article  CAS  PubMed  Google Scholar 

  • Niemeyer C, Matosin N, Kaul D, Philipsen A, Gassen NC (2020) The Role of Cathepsins in Memory Functions and the Pathophysiology of Psychiatric Disorders. Front Psychiatry 11:718

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Brien RJ, Wong PC (2011) Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci 34:185–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao RV, Descamps O, John V, Bredesen DE (2012) Ayurvedic medicinal plants for Alzheimer’s disease: a review. Alzheimer’s Res Ther 4(3):1–9

  • Schuur M, Ikram MA, van Swieten JC, Isaacs A, Vergeer-Drop JM, Hofman A, Oostra BA, Breteler MM, van Duijn CM (2011) Cathepsin D gene and the risk of Alzheimer’s disease: a population-based study and meta-analysis. Neurobiol Aging 32:1607–1614

    Article  CAS  PubMed  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu K, Funamoto M, Sunagawa Y, Shimizu S, Katanasaka Y, Miyazaki Y, Wada H, Hasegawa K, Morimoto T (2019) Anti-inflammatory Action of Curcumin and Its Use in the Treatment of Lifestyle-related Diseases. Eur Cardiol 14:117–122

    Article  PubMed  PubMed Central  Google Scholar 

  • Sng LMF, Thomson PC, Trabzuni D (2019) Genome-wide human brain eQTLs: In-depth analysis and insights using the UKBEC dataset. Sci Rep 9:19201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soldano A et al (2013) The Drosophila homologue of the amyloid precursor protein is a conserved modulator of Wnt PCP signaling. PLoS Biol 11:e1001562

  • Stelzer G et al (2016) VarElect: the phenotype-based variation prioritizer of the GeneCards Suite. BMC Genomics 17(Suppl 2):444

    Article  PubMed  PubMed Central  Google Scholar 

  • Subramanian A et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tipney H, Hunter L (2010) An introduction to effective use of enrichment analysis software. Hum Genomics 4:202–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torroja L, Packard M, Gorczyca M, White K, Budnik V (1999) The Drosophila beta-amyloid precursor protein homolog promotes synapse differentiation at the neuromuscular junction. J Neurosci 19:7793–7803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyagi S, Gupta P, Saini AS, Kaushal C, Sharma S (2011) The peroxisome proliferator-activated receptor: A family of nuclear receptors role in various diseases. J Adv Pharm Technol Res 2:236–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voulgaropoulou SD, Van Amelsvoort TAMJ, Prickaerts J, Vingerhoets C (2019) The effect of curcumin on cognition in Alzheimer’s disease and healthy aging: A systematic review of pre-clinical and clinical studies. Brain Res 1725:146476

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Shen Y, Wang S, Li S, Zhang W, Liu X, Lai L, Pei J, Li H (2017) PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res 45:W356–W360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang F et al (2005) Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 280:5892–5901

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Hu Z, Zhu J, Liang Q, Zhou H, Li J, Fan X, Zhao Z, Pan H, Fei B (2020) Systematic Elucidation of the Mechanism of Quercetin against Gastric Cancer via Network Pharmacology Approach. Biomed Res Int 2020:3860213

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng H, Koo EH (2011) Biology and pathophysiology of the amyloid precursor protein. Mol Neurodegener 6:27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C, Chanda SK (2019) Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 10:1523

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M. A. I. acknowledge University Grant Commission (UGC) for Maulana Azad National Fellowship (candidate ID: MANF-2018-19-BIH-93364).

Author information

Authors and Affiliations

Authors

Contributions

M.Z.M. conceived the model. D.A. M.A.I. and MZ.M. prepared figures of the numerical results. D.A. M.A.I. M.M.U.H. S.D. and M.Z.M. analysed and interpreted the results, D.A. M.A.I., M.M.U.H., S.D., M.A.I. and MZ.M wrote the manuscript. M.A.I and M.Z.M. supervised the study and approved the final draft.

Corresponding author

Correspondence to Md. Zubbair Malik.

Ethics declarations

Ethics approval and consent to participate

Not Applicable.

Consent for publication

Not Applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 14 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijh, D., Imam, M.A., Haque, M.M.U. et al. Network pharmacology and bioinformatics approach reveals the therapeutic mechanism of action of curcumin in Alzheimer disease. Metab Brain Dis 38, 1205–1220 (2023). https://doi.org/10.1007/s11011-023-01160-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-023-01160-3

Keywords

Navigation