Log in

Involvement of regulation of the excitation:inhibition functional balance in the mPFC in the antidepressant-anxiolytic effect of YL-IPA08, a novel TSPO ligand

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

A Correction to this article was published on 10 October 2022

This article has been updated

Abstract

TSPO, an 18 kDa translocator protein, has received increased attention due to its antidepressant-anxiolytic effects. The balance between glutamatergic and GABAergic (E: I) in the medial prefrontal cortex (mPFC) is crucial for antidepressant-anxiolytic effects. However, no evidence is available to clarify the relationship between TSPO and E:I balance. In the present study, we used the TSPO global-knockout (KO) and TSPO wild-type (WT) mice to assess the effects of TSPO on antidepressant-anxiolytic effects of YL-IPA08 (a novel TSPO ligand) and the underlying neurobiological mechanism. Additionally, a multichannel electrophysiological technique was used to explore the effects of YL-IPA08 on pyramidal neurons and interneurons in mPFC. Open field test (OFT) and elevated plus maze (EPM) test revealed that a single dose of YL-IPA08 (0.3 mg/kg, i.p.) exhibited significant anxiolytic actions in WT mice except in KO mice. In only WT mice, significant antidepressant effects were observed in tail suspension test (TST) and forced swim test (FST). The multichannel electrophysiological technique demonstrated that YL-IPA08 significantly increased the firing rates of pyramidal neurons and decreased those of interneurons. Further studies illustrated that the firing rates of glutamatergic might be antagonized by PK11195 (a classic TSPO antagonist). Our results suggest that YL-IPA08 might regulate the E:I balance in mPFC, mediated by TSPO. In summary, TSPO regulates E:I functional balance in mPFC, play a critical role in antidepressant-anxiolytic effects of YL-IPA08, and provide a potential target site for the development of antidepressant and anxiolytic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All the original numbers supporting the conclusions of this paper are provided by authors without undue reservation.

Change history

References

  • Abelli M, Chelli B, Costa B et al (2010) Reductions in platelet 18-kDa translocator protein density are associated with adult separation anxiety in patients with bipolar disorder. Neuropsychobiology 62(2):98–103

    CAS  PubMed  Google Scholar 

  • Azeez IA, Igado OO, Olopade JO (2021) An overview of the orexinergic system in different animal species. Metab Brain Dis 36(7):1419–1444

    CAS  PubMed  Google Scholar 

  • Chelli B, Pini S, Abelli M et al (2008) Platelet 18 kDa translocator protein density is reduced in depressed patients with adult separation anxiety. Eur Neuropsychopharmacol 18(4):249–254

    CAS  PubMed  Google Scholar 

  • Da Pozzo E, Costa B, Martini C (2012) Translocator protein (TSPO) and neurosteroids: implications in psychiatric disorders. Curr Mol Med 12(4):426–442

    PubMed  Google Scholar 

  • Deligiannidis KM, Fales CL, Kroll-Desrosiers AR et al (2019) Resting-state functional connectivity, cortical GABA, and neuroactive steroids in peripartum and peripartum depressed women: a functional magnetic resonance imaging and spectroscopy study. Neuropsychopharmacology 44(3):546–554

    CAS  PubMed  Google Scholar 

  • Duman RS, Aghajanian GK, Sanacora G et al (2016) Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nat Med 22(3):238–249

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fogaca MV, Duman RS (2019) Cortical dysfunction in stress and depression: new insights for therapeutic interventions. Front Cell Neurosci 13:87

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frieder A, Fersh M, Hainline R et al (2019) Pharmacotherapy of postpartum depression: current approaches and novel drug development. CNS Drugs 33(3):265–282

    CAS  PubMed  PubMed Central  Google Scholar 

  • Godfrey KEM, Gardner AC, Kwon S et al (2018) Differences in excitatory and inhibitory neurotransmitter levels between depressed patients and healthy controls: a systematic review and meta-analysis. J Psychiatr Res 105:33–44

    PubMed  Google Scholar 

  • Griebel G, Holmes A (2013) 50 years of hurdles and hope in anxiolytic drug discovery. Nat Rev Drug Discov 12(9):667–687

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gunduz-Bruce H, Silber C, Kaul I et al (2019) Trial of SAGE-217 in patients with major depressive disorder. N Engl J Med 381(10):903–911

    CAS  PubMed  Google Scholar 

  • Hasler G, van der Veen JW, Tumonis T et al (2007) Reduced prefrontal glutamate/glutamine and γ-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Arch Gen Psychiatry 64(2):193–200

    CAS  PubMed  Google Scholar 

  • Homayoun H, Moghaddam B (2007) NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. J Neurosci 27(43):11496–11500

    CAS  PubMed  PubMed Central  Google Scholar 

  • Insel TR, Wang PS (2009) The STAR* D trial: revealing the need for better treatments. Psychiatr Serv 60(11):1466–1467

    PubMed  Google Scholar 

  • ** CH, Xu WW, Yuan JM, Wang GQ, Cheng ZH (2013) Meta-analysis of association between the -1438A/G (rs6311) polymorphism of the serotonin 2A receptor gene and major depressive disorder. Neurol Res 35(1):7–14

    PubMed  Google Scholar 

  • Kita A, Furukawa K (2008) Involvement of neurosteroids in the anxiolytic-like effects of AC-5216 in mice. Pharmacol Biochem Behav 89(2):171–178

    CAS  PubMed  Google Scholar 

  • Kita A, Kohayakawa H, Kinoshita T et al (2004) Antianxiety and antidepressant like effects of AC 5216, a novel mitochondrial benzodiazepine receptor ligand. Br J Pharmacol 142(7):1059–1072

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kita A, Kinoshita T, Kohayakawa H et al (2009) Lack of tolerance to anxiolysis and withdrawal symptoms in mice repeatedly treated with AC-5216, a selective TSPO ligand. Prog Neuro-Psychopharmacol Biol Psychiatry 33(6):1040–1045

    CAS  Google Scholar 

  • Krystal JH, Sanacora G, Blumberg H et al (2002) Glutamate and GABA systems as targets for novel antidepressant and mood-stabilizing treatments. Mol Psychiatry 7(1):S71–S80

    CAS  PubMed  Google Scholar 

  • Kugaya A, Sanacora G (2005) Beyond monoamines: glutamatergic function in mood disorders. CNS Spectr 10(10):808–819

    PubMed  Google Scholar 

  • Lener MS, Niciu MJ, Ballard ED et al (2017) Glutamate and gamma-aminobutyric acid systems in the pathophysiology of major depression and antidepressant response to ketamine. Biol Psychiatry 81(10):886–897

    CAS  PubMed  Google Scholar 

  • Li YF (2020) A hypothesis of monoamine (5-HT) glutamate/GABA long neural circuit: aiming for fast-onset antidepressant discovery. Pharmacol Therapeut 208:107494

    CAS  Google Scholar 

  • Li N, Liu J, Wang M et al (2018) Sedative and hypnotic effects of Schisandrin B through increasing GABA/Glu ratio and upregulating the expression of GABAA in mice and rats. Biomed Pharmacother 103:509–516

    CAS  PubMed  Google Scholar 

  • Lister RG (1987) The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology 92(2):180–185

    CAS  PubMed  Google Scholar 

  • Llado-Pelfort L, Santana N, Ghisi V et al (2012) 5-HT1A receptor agonists enhance pyramidal cell firing in prefrontal cortex through a preferential action on GABA interneurons. Cereb Cortex 22(7):1487–1497

    PubMed  Google Scholar 

  • Luscher B, Fuchs T (2015) GABAergic control of depression-related brain states. Adv Pharmacol 73:97–144

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michael N, Erfurth A, Ohrmann P et al (2003) Neurotrophic effects of electroconvulsive therapy: a proton magnetic resonance study of the left amygdalar region in patients with treatment-resistant depression. Neuropsychopharmacology 28(4):720–725

    CAS  PubMed  Google Scholar 

  • O’Leary OF, Dinan TG, Cryan JF (2015) Faster, better, stronger: towards new antidepressant therapeutic strategies. Eur J Pharmacol 753:32–50

    PubMed  Google Scholar 

  • Papadopoulos V, Aghazadeh Y, Fan J et al (2015) Translocator protein-mediated pharmacology of cholesterol transport and steroidogenesis. Mol Cell Endocrinol 408:90–98

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Elsevier, London

    Google Scholar 

  • Poleszak E, Szopa A, Bogatko K et al (2019) Antidepressant-like activity of typical antidepressant drugs in the forced swim test and tail suspension test in mice is augmented by DMPX, an adenosine A2A receptor antagonist. Neurotox Res 35(2):344–352

    CAS  PubMed  Google Scholar 

  • Porsolt RD, Anton G, Blavet N et al (1978) Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol 47(4):379–391

    CAS  PubMed  Google Scholar 

  • Powell TR, Fernandes C, Schalkwyk LC (2012) Depression related behavioral tests. Curr Protoc Mouse Biol 2(2):119–127

    PubMed  Google Scholar 

  • Rupprecht R, Papadopoulos V, Rammes G et al (2010) Translocator protein (18 kDa)(TSPO) as a therapeutic target for neurological and psychiatric disorders. Nat Rev Drug Discov 9(12):971–988

    CAS  PubMed  Google Scholar 

  • Sanacora G, Rothman DL, Mason G et al (2003) Clinical studies implementing glutamate neurotransmission in mood disorders. Ann N Y Acad Sci 1003(1):292–308

    CAS  PubMed  Google Scholar 

  • Shang C, Yao RM, Guo Y et al (2020) Translocator protein mediated fast-onset antidepressant-like and memory-enhancing effects in chronically stressed mice. J Psychopharmacol 34(4):441–451

    CAS  PubMed  Google Scholar 

  • Shibuya-Tayoshi S, Tayoshi SY, Sumitani S et al (2008) Lithium effects on brain glutamatergic and GABAergic systems of healthy volunteers as measured by proton magnetic resonance spectroscopy. Prog Neuro-Psychopharmacol Biol Psychiatry 32(1):249–256

    CAS  Google Scholar 

  • Soreni N, Apter A, Weizman A et al (1999) Decreased platelet peripheral-type benzodiazepine receptors in adolescent inpatients with repeated suicide attempts. Biol Psychiatry 46(4):484–488

    CAS  PubMed  Google Scholar 

  • Stallwood E, Monsour A, Rodrigues C et al (2021) Systematic review: the measurement properties of the Children’s depression rating scale-revised in adolescents with major depressive disorder. J Am Acad Child Adolesc Psychiatry 60(1):119–133

    PubMed  Google Scholar 

  • Steru L, Chermat R, Thierry B et al (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 85(3):367–370

    CAS  PubMed  Google Scholar 

  • Stone JM, Dietrich C, Edden R et al (2012) Ketamine effects on brain GABA and glutamate levels with 1H-MRS: relationship to ketamine-induced psychopathology. Mol Psychiatry 17(7):664–665

    CAS  PubMed  Google Scholar 

  • Walsh RN, Cummins RA (1976) The open-field test: a critical review. Psychol Bull 83(3):482

    CAS  PubMed  Google Scholar 

  • Wang H, Zhai K, Xue Y et al (2016) Global deletion of TSPO does not affect the viability and gene expression profile. PLoS One 11(12):e0167307

    PubMed  PubMed Central  Google Scholar 

  • Wilkinson ST, Sanacora G (2019) A new generation of antidepressants: an update on the pharmaceutical pipeline for novel and rapid-acting therapeutics in mood disorders based on glutamate/GABA neurotransmitter systems. Drug Discov Today 24(2):606–615

    CAS  PubMed  Google Scholar 

  • Wohleb ES, Wu M, Gerhard DM et al (2016) GABA interneurons mediate the rapid antidepressant-like effects of scopolamine. J Clin Invest 126(7):2482–2494

    PubMed  PubMed Central  Google Scholar 

  • Yao JQ, Liu C, ** ZL et al (2020) Serotonergic transmission is required for the anxiolytic-like behavioral effects of YL-IPA08, a selective ligand targeting TSPO. Neuropharmacology 178:108230

    CAS  PubMed  Google Scholar 

  • Yin YY, Wang YH, Liu WG et al (2021) The role of the excitation: inhibition functional balance in the mPFC in the onset of antidepressants. Neuropharmacology 191:108573

    CAS  PubMed  Google Scholar 

  • Zhang LM, Qiu ZK, Zhao N et al (2014a) Anxiolytic-like effects of YL-IPA08, a potent ligand for the translocator protein (18 kDa) in animal models of post-traumatic stress disorder. Int J Neuropsychopharmacol 17(10):1659–1669

    CAS  PubMed  Google Scholar 

  • Zhang LM, Zhao N, Guo WZ et al (2014b) Antidepressant-like and anxiolytic-like effects of YL-IPA08, a potent ligand for the translocator protein (18 kDa). Neuropharmacology 81:116–125

    CAS  PubMed  Google Scholar 

  • Zhang LM, Wang YL, Liu YQ et al (2017) Antidepressant-like effects of YL-IPA08, a potent ligand for the translocator protein (18 kDa) in chronically stressed rats. Neuropharmacology 113:567–575

    CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the Natural Science Foundation of China (No 81771129, 81773708, and 81173036) and the Military Medical Technology Incubation Project for Youth (20QNPY094).

Author information

Authors and Affiliations

Authors

Contributions

** Yuan: Investigation, Performed multiple tests, Data acquisition and analysis, Writing-Original Draft, Visualization; Jun-Qi Yao: Performed the TSTand FST tests, data acquisition and analysis; **n-**n Fang: Revised the manuscript; Wei Dai: Methodology; Supervised the experiments; Yun-Hui Wang: Revised the manuscript; Li-Ming Zhang: Conceptualization, Writing-review and editing; Yun-Feng Li: Resources, Conceptualization, Supervision, Project Administration; and all participants agreed to publish the studies data.

Corresponding authors

Correspondence to Li-Ming Zhang or Yun-Feng Li.

Ethics declarations

Competing interests

The author has no relevant financial or non-financial conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yun-Feng Li is the main contributor and Li-Ming Zhang is the secondary contributor.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, J., Yao, JQ., Fang, XX. et al. Involvement of regulation of the excitation:inhibition functional balance in the mPFC in the antidepressant-anxiolytic effect of YL-IPA08, a novel TSPO ligand. Metab Brain Dis 37, 2305–2314 (2022). https://doi.org/10.1007/s11011-022-00961-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-022-00961-2

Keywords

Navigation