Log in

Effects of a physical exercise or motor activity protocol on cognitive function, lipid profile, and BDNF levels in older adults with mild cognitive impairment

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

This study analyzed the effects of a physical exercise program compared to the complexity of the motor task on the cognitive function, brain-derived neurotrophic factor (BDNF) levels, and lipid profile of older adults with mild cognitive impairment (MCI). Twenty-seven participants were randomized into three intervention groups: Physical Exercise (PE), Motor Task (MT), and Physical Exercise associated with Motor Task (PE + MT). Six months of intervention twice a week resulted in improvements in cognitive function, total cholesterol (TC), and LDL cholesterol (LDL-C) in the PE (p < 0.05). In the PE + MT, in addition to improved cognitive capacity, there was also a reduction in non-HDL cholesterol (NHDL-C) and LDL cholesterol (LDL-C) levels (p < 0.05), while in the MT, the values of TC, NHDL-C, and LDL-C decreased as a result of the intervention. BDNF levels were not affected by the interventions. In conclusion, PE alone or combined with MT is effective in promoting improvements in overall cognitive function and lipid profile in older adults with MCI; and BDNF seems not to be a sensitive marker for people with mild cognitive impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Data will be made available upon request to the corresponding author.

References

  1. Tangalos EG, Petersen RC (2018) Mild cognitive impairment in geriatrics. Clin Geriatr Med 34:563–589. https://doi.org/10.1016/j.cger.2018.06.005

    Article  PubMed  Google Scholar 

  2. World Health Organization (2017) Draft global action plan on the public health response to dementia 2017–2025.

  3. Barbarino P, Lynch C, Bliss A, Dabas L, Alzheimer’s Disease International (ADI) (2020) From plan to impact III: Maintaining dementia as a priority in unprecedented times. Alzheimer’s Disease International (ADI): London.

  4. Rosenberg A, Mangialasche F, Ngandu T, Solomon A, Kivipelto M (2020) Multidomain interventions to prevent cognitive impairment, Alzheimer’s disease, and dementia: from finger to world-wide fingers. J Prev Alzheimers Dis 7:29–36. https://doi.org/10.14283/jpad.2019.41

    Article  CAS  PubMed  Google Scholar 

  5. Loy CT, Schofield PR, Turner AM, Kwok JBJ (2014) Genetics of dementia. Lancet 383:828–840. https://doi.org/10.1016/S0140-6736(13)60630-3

    Article  CAS  PubMed  Google Scholar 

  6. Bosi M, Malavolti M, Garuti C, Tondelli M, Marchesi C, Vinceti M, Filippini T (2022) Environmental and lifestyle risk factors for early-onset dementia: a systematic review. Acta Biomed 93:1–16. https://doi.org/10.23750/abm.v93i6.13279

    Article  Google Scholar 

  7. Santiago-Bravo G, Sudo FK, Assunção N, Drummond C, Mattos P (2019) Dementia screening in Brazil: a systematic review of normative data for the mini-mental state examination. Clinics 74:e971. https://doi.org/10.6061/clinics/2019/e971

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sexton CE, Yaffe K (2019) Population-based approaches to dementia prevention. J Alzheimers Dis 70:S15. https://doi.org/10.3233/JAD-190104

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wanamaker BL, Swiger KJ, Blumenthal RS, Martin SS (2015) Cholesterol, statins, and dementia: what the cardiologist should know. Clin Cardiol 38:243–250. https://doi.org/10.1002/clc.22361

    Article  PubMed  PubMed Central  Google Scholar 

  10. Briggs AM, Cross MJ, Hoy DJ et al (2016) Musculoskeletal health conditions represent a global threat to healthy aging: a report for the 2015 World Health Organization world report on ageing and health. Gerontologist 56:S243–S255. https://doi.org/10.1093/geront/gnw002

    Article  PubMed  Google Scholar 

  11. Livingston G, Sommerlad A, Orgeta V (2017) Dementia prevention, intervention, and care. Lancet 390:2673–2734. https://doi.org/10.1016/S0140-6736(17)31363-6

    Article  PubMed  Google Scholar 

  12. Livingston G, Huntley J, Sommerlad A (2020) Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 396:413–446. https://doi.org/10.1016/S0140-6736(20)30367-6

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kivipelto M, Mangialasche F, Ngandu T (2018) Lifestyle interventions to prevent cognitive impairment, dementia and Alzheimer disease. Nat Rev Neurol 14:653–666. https://doi.org/10.1038/s41582-018-0070-3

    Article  PubMed  Google Scholar 

  14. Rocha SV, Almeida MMG, Araújo TM, Virtuoso JS (2011) Physical activity in leisure and common mental disorders among elderly residents in a town of northwest Brazil. J Bras Psiquiatr 60:80–85. https://doi.org/10.1590/S0047-20852011000200002

    Article  Google Scholar 

  15. Blondell SJ, Hammersley-Mather R, Veerman JL (2014) Does physical activity prevent cognitive decline and dementia? A systematic review and meta-analysis of longitudinal studies. BMC Public Health 14:510. https://doi.org/10.1186/1471-2458-14-510

    Article  PubMed  PubMed Central  Google Scholar 

  16. Horr T, Messinger-Rapport B, Pillai JA (2015) Systematic review of strengths and limitations of randomized controlled trials for non-pharmacological interventions in mild cognitive impairment: focus on Alzheimer’s disease. J Nutr Health Aging 19:141. https://doi.org/10.1007/s12603-014-0565-6

    Article  CAS  PubMed  Google Scholar 

  17. Young J, Angevaren M, Rusted J, Tabet N (2015) Aerobic exercise to improve cognitive function in older people without known cognitive impairment. Cochrane Database Syst Rev 22:CD005381. https://doi.org/10.1002/14651858.CD005381

    Article  Google Scholar 

  18. Groot C, Hooghiemstra AM, Raijmakers PGHM et al (2016) The effect of physical activity on cognitive function in patients with dementia: a meta-analysis of randomized control trials. Ageing Res Rev 25:13–23. https://doi.org/10.1016/j.arr.2015.11.005

    Article  CAS  PubMed  Google Scholar 

  19. Lee HS, Park SW, Park YJ (2016) Effects of physical activity programs on the improvement of dementia symptom: a meta-analysis. Biomed Res Int. https://doi.org/10.1155/2016/2920146

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kennedy G, Hardman RJ, Macpherson H, Scholey AB, Pi**as A (2017) How does exercise reduce the rate of age-associated cognitive decline? A review of potential mechanisms. J Alzheimers Dis 55:1–18. https://doi.org/10.3233/JAD-160665

    Article  PubMed  Google Scholar 

  21. Song D, Yu DSF, Li PWC, Lei Y (2018) The effectiveness of physical exercise on cognitive and psychological outcomes in individuals with mild cognitive impairment: a systematic review and meta-analysis. Int J Nurs Stud 79:155–164. https://doi.org/10.1016/j.ijnurstu.2018.01.00

    Article  PubMed  Google Scholar 

  22. Wahl D, Solon-Biet SM, Cogger VC et al (2019) Aging, lifestyle and dementia. Neurobiol Dis 130:104481. https://doi.org/10.1016/j.nbd.2019.104481

    Article  PubMed  Google Scholar 

  23. Cheng ST (2016) Cognitive reserve and the prevention of dementia: the role of physical and cognitive activities. Curr Psychiatry Rep 18:1–12. https://doi.org/10.1007/s11920-016-0721-2

    Article  Google Scholar 

  24. Trombetta IC, Moura JR, Alves CR et al (2020) Níveis séricos do BDNF na proteção cardiovascular e em resposta ao exercício. Arq Bras Cardiol 115:263–269. https://doi.org/10.36660/abc.20190368

    Article  PubMed  PubMed Central  Google Scholar 

  25. Johansson BB (2000) Brain plasticity and stroke rehabilitation: the Willis lecture. Stroke 31:223–230. https://doi.org/10.1161/01.str.31.1.223

    Article  CAS  PubMed  Google Scholar 

  26. Jones TA, Bury SD, Adkins-Muir DL et al (2003) Importance of behavioral manipulations and measures in rat models of brain damage and brain repair. ILAR J 44:144–152. https://doi.org/10.1093/ilar.44.2.144

    Article  CAS  PubMed  Google Scholar 

  27. Kleim JA, Bruneau R, Calder K (2003) Functional organization of adult motor cortex is dependent upon continued protein synthesis. Neuron 40:167–176. https://doi.org/10.1016/s0896-6273(03)00592-0

    Article  CAS  PubMed  Google Scholar 

  28. Levin HS (2006) Neuroplasticity and brain imaging research: implications for rehabilitation. Arch Phys Med Rehabil 87:S1. https://doi.org/10.1016/j.apmr.2006.09.010

    Article  PubMed  Google Scholar 

  29. Christofoletti G, Freitas RT, Cândido ER, Cardoso CS (2010) Eficácia de tratamento fisioterapêutico no equilíbrio estático e dinâmico de pacientes com doença de Parkinson. Fisioter Pesqui 17:259–263. https://doi.org/10.1590/S1809-29502010000300013

    Article  Google Scholar 

  30. Plummer-D’Amato P, Altmann LJP, Behrman AL, Marsiske M (2010) Interference between cognition, double-limb support, and swing during gait in community-dwelling individuals poststroke. Neurorehabil Neural Repair 24:542–549. https://doi.org/10.1177/1545968309357926

    Article  PubMed  PubMed Central  Google Scholar 

  31. Netz Y (2019) Is there a preferred mode of exercise for cognition enhancement in older age? A narrative review. Front Med 6:57. https://doi.org/10.3389/fmed.2019.00057

    Article  Google Scholar 

  32. Gillette-Guyonnet S, Andrieu S, Dantoine T et al (2009) Commentary on “A roadmap for the prevention of dementia II. Leon Thal Symposium 2008”: the multidomain Alzheimer preventive trial (MAPT): a new approach to the prevention of Alzheimer’s disease. Alzheimers Dement 5:114–121. https://doi.org/10.1016/j.jalz.2009.01.008

    Article  PubMed  Google Scholar 

  33. Vellas B, Carrie I, Gillette-Guyonnet S et al (2014) MAPT study: a multidomain approach for preventing Alzheimer’s disease: design and baseline data. J Prev Alzheimers Dis 1:13–22

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ngandu T, Lehtisalo J, Solomon A et al (2015) A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet 385:2255–2263. https://doi.org/10.1016/S0140-6736(15)60461-5

    Article  PubMed  Google Scholar 

  35. Van Charante EPM, Richard E, Eurelings LS et al (2016) Effectiveness of a 6-year multidomain vascular care intervention to prevent dementia (preDIVA): a cluster-randomised controlled trial. Lancet 388:797–805. https://doi.org/10.1016/S0140-6736(16)30950-3

    Article  Google Scholar 

  36. Rosenberg A, Ngandu T, Rusanen M et al (2018) Multidomain lifestyle intervention benefits a large elderly population at risk for cognitive decline and dementia regardless of baseline characteristics: the FINGER trial. Alzheimers Dement 14:263–270. https://doi.org/10.1016/j.jalz.2017.09.006

    Article  PubMed  Google Scholar 

  37. Rolland Y, Barreto FS, Maltais M et al (2019) Effect of long-term omega 3 polyunsaturated fatty acid supplementation with or without multidomain lifestyle intervention on muscle strength in older adults: secondary analysis of the multidomain Alzheimer preventive trial (MAPT). Nutrients 11:1931. https://doi.org/10.3390/nu11081931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Marusic U, Verghese J, Mahoney JR (2018) Cognitive-based interventions to improve mobility: a systematic review and meta-analysis. J Am Med Dir Assoc 19:484–491. https://doi.org/10.1016/j.jamda.2018.02.002

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hulley SB, Cummings S, Browner WS et al (2015) Delineando a pesquisa clínica-4. Artmed, Porto Alegre

    Google Scholar 

  40. Schulz KF, Altman DG, Moher D (2010) CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. Br Med J 340:c332. https://doi.org/10.1186/1741-7015-8-18

    Article  Google Scholar 

  41. Morris JC (1993) The clinical dementia rating (CDR): current version and scoring rules. Neurology 43:2412–2414. https://doi.org/10.1212/wnl.43.11.2412-a

    Article  CAS  PubMed  Google Scholar 

  42. Macedo Montaño MBM, Ramos LR (2005) Validade da versão em português da Clinical Dementia Rating. Rev Saude Publica 39:912–917. https://doi.org/10.1590/s0034-89102005000600007

    Article  Google Scholar 

  43. Santana I, Duro D, Lemos R et al (2016) Mini-mental state examination: screening and diagnosis of cognitive decline, using new normative data. Acta Med Port 29:240–248. https://doi.org/10.20344/amp.6889

    Article  PubMed  Google Scholar 

  44. Folstein MF, Folstein SE, Mchugh PR (1975) “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J Psychiat res 12:189–198

    Article  CAS  PubMed  Google Scholar 

  45. Brucki SMD, Nitrini R, Caramelli P, Bertolucci PHF (2003) Sugestões para o uso do mini-exame do estado mental no Brasil. Arq Neuropsiquiatr 61:777–781. https://doi.org/10.1590/S0004-282X2003000500014

    Article  PubMed  Google Scholar 

  46. Brucki SMD, Nitrini R (2010) Mini-mental state examination among lower educational levels and illiterates: transcultural evaluation. Dement Neuropsychol 4:120–125. https://doi.org/10.1590/S1980-57642010DN40200008

    Article  PubMed  PubMed Central  Google Scholar 

  47. Leite CF, Hartleben CP, Magalhães CS, Rombaldi AJ (2012) Perfil lipídico e glicêmico de ratos treinados em exercício aeróbio ou anaeróbio e suplementados com maltodextrina. Rev Bras Cienc Esporte 35:39–50. https://doi.org/10.1590/S0101-32892013000100005

    Article  Google Scholar 

  48. Hoffmann TC, Glasziou PP, Boutron I et al (2014) Better reporting of interventions: template for intervention description and replication (TIDieR) checklist and guide. Br Med J 348:g1687. https://doi.org/10.1136/bmj.g1687

    Article  Google Scholar 

  49. Chodzko-Zajko WJ, Proctor DN, Singh MAF et al (2009) Exercise and physical activity for older adults. Med Sci Sports Exerc 41:1510–1530. https://doi.org/10.1249/MSS.0b013e3181a0c95c

    Article  PubMed  Google Scholar 

  50. Angevaren M, Aufdemkampe G, Verhaar HJJ et al (2008) Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD005381.pub3

    Article  PubMed  Google Scholar 

  51. Malloy-Diniz LF, Fuentes D, Cosenza RM (2013) Neuropsicologia do envelhecimento: Uma abordagem multidimensional. Artmed, Porto Alegre

    Google Scholar 

  52. Anderson-Hanley C, Barcelos NM, Zimmerman EA et al (2018) The aerobic and cognitive exercise study (ACES) for community-dwelling older adults with or at-risk for mild cognitive impairment (MCI): neuropsychological, neurobiological and neuroimaging outcomes of a randomized clinical trial. Front Aging Neurosci 10:76. https://doi.org/10.3389/fnagi.2018.00076

    Article  PubMed  PubMed Central  Google Scholar 

  53. Garber CE, Blissmer B, Deschenes MR et al (2011) Quantity and quality of exercise for develo** and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc 43:1334–1359. https://doi.org/10.7916/D8CR5T2R

    Article  PubMed  Google Scholar 

  54. Gentile AM (1972) A working model of skill acquisition with application to teaching. Quest 17:3–23. https://doi.org/10.1080/00336297.1972.10519717

    Article  Google Scholar 

  55. Gentile AM (2000) Skill acquisition: action, movement, and neuromotor processes: movement science foundations for physical therapy in rehabilitation. Gaithersburg, Aspen

    Google Scholar 

  56. Gentile AM (2011) Skill acquisition: action, movement, and neuromotor processes. In Magill RA (ed) Aprendizagem e controle motor: Conceitos e aplicações, 8a edn. Phorte.

  57. Poulton EC (1975) Range effects in experiments on people. Am J Psychol 88:3–32. https://doi.org/10.2307/1421662

    Article  Google Scholar 

  58. Magill RA (2008) Aprendizagem motora: Conceitos e aplicações. Edgard Blücher

    Google Scholar 

  59. Magill RA (2011) Aprendizagem e controle motor: Conceitos e aplicações. Phorte

    Google Scholar 

  60. Kirk-Sanchez NJ, McGough EL (2014) Physical exercise and cognitive performance in the elderly: current perspectives. Clin Interv Aging 9:51. https://doi.org/10.2147/CIA.S39506

    Article  PubMed  Google Scholar 

  61. Singh MAF, Gates N, Saigal N (2014) The study of mental and resistance training (SMART) study—resistance training and/or cognitive training in mild cognitive impairment: a randomized, double-blind, double-sham controlled trial. J Am Med Dir Assoc 15:873–880. https://doi.org/10.1016/j.jamda.2014.09.010

    Article  PubMed  Google Scholar 

  62. Sindi S, Calov E, Fokkens J et al (2015) The CAIDE dementia risk score app: the development of an evidence-based mobile application to predict the risk of dementia. Alzheimer’s Dement 1:328–333. https://doi.org/10.1016/j.dadm.2015.06.005

    Article  Google Scholar 

  63. Suo C, Singh MF, Gates N et al (2016) Therapeutically relevant structural and functional mechanisms triggered by physical and cognitive exercise. Mol Psychiatry 21:1633–1642. https://doi.org/10.1038/mp.2016.19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Karssemeijer EE, Aaronson JA, Bossers WJ (2017) Positive effects of combined cognitive and physical exercise training on cognitive function in older adults with mild cognitive impairment or dementia: a meta-analysis. Ageing Res Rev 40:75–83. https://doi.org/10.1016/j.arr.2017.09.003

    Article  PubMed  Google Scholar 

  65. Mavros Y, Gates N, Wilson GC et al (2017) Mediation of cognitive function improvements by strength gains after resistance training in older adults with mild cognitive impairment: outcomes of the study of mental and resistance training. J Am Geriatr Soc 65:550–559. https://doi.org/10.1111/jgs.14542

    Article  PubMed  Google Scholar 

  66. Northey JM, Cherbuin N, Pumpa KL, Smee DJ, Rattray B (2018) Exercise interventions for cognitive function in adults older than 50: a systematic review with meta-analysis. Br J Sports Med 52:154–160. https://doi.org/10.1136/bjsports-2016-096587

    Article  PubMed  Google Scholar 

  67. Casserly I, Topol EJ (2004) Convergence of atherosclerosis and Alzheimer’s disease: inflammation, cholesterol, and misfolded proteins. Lancet 363(9415):1139–1146. https://doi.org/10.1016/S0140-6736(04)15900-X

    Article  CAS  PubMed  Google Scholar 

  68. De La Torre JC (2004) Is Alzheimer’s disease a neurodegenerative or a vascular disorder? Data, dogma, and dialectics. Lancet Neurol 3:184–190. https://doi.org/10.1016/S1474-4422(04)00683-0

    Article  PubMed  Google Scholar 

  69. Van Norden AGW, Van Dijk EJ, Laat KF et al (2012) Dementia: Alzheimer pathology and vascular factors: from mutually exclusive to interaction. Biochim Biophys Acta 1822:340–349. https://doi.org/10.1016/j.bbadis.2011.07.003

    Article  CAS  PubMed  Google Scholar 

  70. Norton S, Matthews FE, Barnes DE, Yaffe C, Brayne C (2014) Potential for primary prevention of Alzheimer’s disease: an analysis of population-based data. Lancet Neurol 13:788–794. https://doi.org/10.1016/S1474-4422(14)70136-X

    Article  PubMed  Google Scholar 

  71. Picano E, Bruno RM, Ferrari G, Bonuccelli U (2014) Cognitive impairment and cardiovascular disease: so near, so far. Int J Cardiol 175:21–29. https://doi.org/10.1016/j.ijcard.2014.05.004

    Article  PubMed  Google Scholar 

  72. Faludi AA, Izar MCO, Saraiva JFK et al (2017) Atualização da diretriz brasileira de dislipidemias e prevenção da aterosclerose–2017. Arq Bras Cardiol 109:1–76. https://doi.org/10.5935/abc.20170121

    Article  PubMed  Google Scholar 

  73. Quispe R, Hendrani A, Elshazly MB et al (2017) Accuracy of low-density lipoprotein cholesterol estimation at very low levels. BMC Med 15:1–11. https://doi.org/10.1186/s12916-017-0852-2

    Article  CAS  Google Scholar 

  74. Marmot MG, Smith GD, Stansfeld S (1991) Health inequalities among British civil servants: the Whitehall II study. Lancet 337:1387–1393. https://doi.org/10.1016/0140-6736(91)93068-k

    Article  CAS  PubMed  Google Scholar 

  75. Marmot MG, Brunner E (2005) Cohort profile: the Whitehall II study. Int J Epidemiol 34:251–256. https://doi.org/10.1093/ije/dyh372

    Article  PubMed  Google Scholar 

  76. Singh-Manoux A, Gimeno D, Kivimaki M, Brunner E, Marmot MG (2008) Low HDL cholesterol is a risk factor for deficit and decline in memory in midlife: the Whitehall II study. Arterioscler Thromb Vasc Biol 28:1556–1562. https://doi.org/10.1161/ATVBAHA.108.163998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ng TP, Feng L, Nyunt MSZ et al (2016) Metabolic syndrome and the risk of mild cognitive impairment and progression to dementia: follow-up of the Singapore longitudinal ageing study cohort. JAMA Neurol 73:456–463. https://doi.org/10.1001/jamaneurol.2015.4899

    Article  PubMed  Google Scholar 

  78. Giacomin K, Moares G (2006) Comprometimento cognitivo vascular e demência. Tratado de geriatria e gerontologia, Guanabara Koogan, Rio de Janeiro

    Google Scholar 

  79. Manfredi P, Alves ALS, Graeff DB et al (2020) Perfil lipídico de idosas de um centro de referência e atenção ao idoso. Estud Interdiscipl Envelhec 25:95–106. https://doi.org/10.22456/2316-2171.83841

    Article  Google Scholar 

  80. Babaei P, Azari HB (2022) Exercise training improves memory performance in older adults: a narrative review of evidence and possible mechanisms. Front Hum Neurosci 15:771553. https://doi.org/10.3389/fnhum.2021.771553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Andrade LP (2014) Exercício físico e funções cognitivas em pacientes com doença de Alzheimer: Associação com BDNF e APOE, Thesis. Universidade Estadual Paulista Júlio de Mesquita Filho

    Google Scholar 

  82. Gelfo F, Mandolesi L, Serra L, Sorrentino G, Caltagirone C (2018) The neuroprotective effects of experience on cognitive functions: evidence from animal studies on the neurobiological bases of brain reserve. Neuroscience 370:218–235. https://doi.org/10.1016/j.neuroscience.2017.07.065

    Article  CAS  PubMed  Google Scholar 

  83. Wang X, Wang H, Ye Z et al (2020) The neurocognitive and BDNF changes of multicomponent exercise for community-dwelling older adults with mild cognitive impairment or dementia: A systematic review and meta-analysis. Aging 12:4907–17. https://doi.org/10.18632/aging.102918

    Article  PubMed  PubMed Central  Google Scholar 

  84. Morita T, Higuchi A, Ozaki A, Shimada Y, Tanimoto T (2017) The possibility of vascular care for prevention of dementia. Lancet 389:152–153. https://doi.org/10.1016/S0140-6736(17)30016-8

    Article  PubMed  Google Scholar 

  85. Tamaoka A (2016) Dyslipidemia and dementia. Brain Nerve 68:737–42. https://doi.org/10.11477/mf.1416200505

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The present study did not receive any funding.

Author information

Authors and Affiliations

Authors

Contributions

CADS, CBS, and VSC contributed to the study conception and design. Material preparation, data collection, and analysis were performed by CADS, CBS, AMC, AR, and COB. The first draft of the manuscript was written by CADS and CBS and all authors commented on the previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Clodoaldo Antônio De Sá.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Sá, C.A., Saretto, C.B., Cardoso, A.M. et al. Effects of a physical exercise or motor activity protocol on cognitive function, lipid profile, and BDNF levels in older adults with mild cognitive impairment. Mol Cell Biochem 479, 499–509 (2024). https://doi.org/10.1007/s11010-023-04733-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-023-04733-z

Keywords

Navigation