Log in

Significance of UGT1A6, UGT1A9, and UGT2B7 genetic variants and their mRNA expression in the clinical outcome of renal cell carcinoma

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

UDP-glucuronosyltransferase (UGT) metabolizes a number of endogenous and exogenous substrates. Renal cells express high amounts of UGT; however, the significance of UGT in patients with renal cell carcinoma (RCC) remains unknown. In this study, we profile the mRNA expression of UGT subtypes (UGT1A6, UGT1A9, and UGT2B7) and their genetic variants in the kidney tissue of 125 Japanese patients with RCC (Okayama University Hospital, Japan). In addition, we elucidate the association between the UGT variants and UGT mRNA expression levels and clinical outcomes in these patients. The three representative genetic variants, namely, UGT1A6 541A > G, UGT1A9 i399C > T, and UGT2B7-161C > T, were genotyped, and their mRNA expression levels in each tissue were determined. We found that the mRNA expression of the three UGTs (UGT1A6, UGT1A9, and UGT2B7) are significantly downregulated in RCC tissues. Moreover, in patients with RCC, the UGT2B7-161C > T variant and high UGT2B7 mRNA expression are significantly correlated with preferable cancer-specific survival (CSS) and overall survival (OS), respectively. As such, the UGT2B7-161C > T variant and UGT2B7 mRNA expression level were identified as significant independent prognostic factors of CSS and CSS/OS, respectively. Taken together, these findings indicate that UGT2B7 has a role in RCC progression and may, therefore, represent a potential prognostic biomarker for patients with RCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  2. Du Z, Chen W, **a Q, Shi O, Chen Q (2020) Trends and projections of kidney cancer incidence at the global and national levels, 1990–2030: a Bayesian age-period-cohort modeling study. Biomark Res 8:16. https://doi.org/10.1186/s40364-020-00195-3

    Article  PubMed  PubMed Central  Google Scholar 

  3. Allain EP, Rouleau M, Lévesque E, Guillemette C (2020) Emerging roles for UDP-glucuronosyltransferases in drug resistance and cancer progression. Br J Cancer 122:1277–1287. https://doi.org/10.1038/s41416-019-0722-0

    Article  PubMed  PubMed Central  Google Scholar 

  4. Guillemette C, Lévesque É, Rouleau M (2014) Pharmacogenomics of human uridine diphospho-glucuronosyltransferases and clinical implications. Clin Pharmacol Ther 96:324–339. https://doi.org/10.1038/clpt.2014.126

    Article  CAS  PubMed  Google Scholar 

  5. Ge Y, Chen S, Mu W, Ba Q, Li J, Chen P et al (2019) Epigenetic regulation of UDP-Glucuronosyltransferase by microRNA-200a/-183: implications for responses to sorafenib treatment in patients with hepatocellular carcinoma. Cancer Lett 454:14–25. https://doi.org/10.1016/j.canlet.2019.03.030

    Article  CAS  PubMed  Google Scholar 

  6. Bock KW (2015) Roles of human UDP-glucuronosyltransferases in clearance and homeostasis of endogenous substrates, and functional implications. Biochem Pharmacol 96:77–82. https://doi.org/10.1016/j.bcp.2015.04.020

    Article  CAS  PubMed  Google Scholar 

  7. Izumi K, Li Y, Ishiguro H, Zheng Y, Yao JL, Netto GJ, Miyamoto H (2014) Expression of UDP-glucuronosyltransferase 1A in bladder cancer: association with prognosis and regulation by estrogen. Mol Carcinog 53:314–324. https://doi.org/10.1002/mc.21978

    Article  CAS  PubMed  Google Scholar 

  8. Hu DG, Selth LA, Tarulli GA et al (2016) Androgen and estrogen receptors in breast cancer coregulate human UDP-Glucuronosyltransferases 2B15 and 2B17. Cancer Res 76:5881–5893. https://doi.org/10.1158/0008-5472.CAN-15-3372

    Article  CAS  PubMed  Google Scholar 

  9. Zhao F, Wang X, Wang Y, Zhang J, Lai R, Zhang B, Zhou X (2020) The function of uterine UDP-glucuronosyltransferase 1A8 (UGT1A8) and UDP-glucuronosyltransferase 2B7 (UGT2B7) is involved in endometrial cancer based on estrogen metabolism regulation. Hormones (Athens) 19:403–412. https://doi.org/10.1007/s42000-020-00213-x

    Article  PubMed  Google Scholar 

  10. Hu DG, Hulin JU, Nair PC, Haines AZ, McKinnon RA, Mackenzie PI, Meech R (2019) The UGTome: the expanding diversity of UDP glycosyltransferases and its impact on small molecule metabolism. Pharmacol Ther 204:107414. https://doi.org/10.1016/j.pharmthera.2019.107414

    Article  CAS  PubMed  Google Scholar 

  11. Sawyer MB, Pituskin E, Damaraju S, Bies RR, Vos LJ, Prado CM et al (2016) A uridine glucuronosyltransferase 2B7 polymorphism predicts epirubicin clearance and outcomes in early-stage breast cancer. Clin Breast Cancer 16:139–144. https://doi.org/10.1016/j.clbc.2015.09.006

    Article  CAS  PubMed  Google Scholar 

  12. De Mattia E, Cecchin E, Polesel J, Lupo F, Tiribelli C, Crovatto M, Buonadonna A, Toffoli G (2017) UGT1A polymorphisms as genetic biomarkers for hepatocellular carcinoma risk in Caucasian population. Liver Int 37:1345–1353. https://doi.org/10.1111/liv.13411

    Article  CAS  PubMed  Google Scholar 

  13. Shen ML, **ao A, Yin SJ, Wang P, Lin XQ, Yu CB, He GH (2019) Associations between UGT2B7 polymorphisms and cancer susceptibility: a meta-analysis. Gene 706:115–123. https://doi.org/10.1016/j.gene.2019.05.025

    Article  CAS  PubMed  Google Scholar 

  14. Court MH, Zhang X, Ding X, Yee KK, Hesse LM, Finel M (2012) Quantitative distribution of mRNAs encoding the 19 human UDP-glucuronosyltransferase enzymes in 26 adult and 3 fetal tissues. Xenobiotica 42:266–277. https://doi.org/10.3109/00498254.2011.618954

    Article  CAS  PubMed  Google Scholar 

  15. Knights KM, Rowland A, Miners JO (2013) Renal drug metabolism in humans: the potential for drug-endobiotic interactions involving cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT). Br J Clin Pharmacol 76:587–602. https://doi.org/10.1111/bcp.12086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Margaillan G, Rouleau M, Fallon JK, Caron P, Villeneuve L, Turcotte V et al (2015) Quantitative profiling of human renal UDP-glucuronosyltransferases and glucuronidation activity: a comparison of normal and tumoral kidney tissues. Drug Metab Dispos 43:611–619. https://doi.org/10.1124/dmd.114.062877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Matsumoto J, Kotera Y, Watari S, Takeuchi K, Ueki H, Koyama T et al (2021) Relevance of CYP3A5 expression on the clinical outcome of patients with renal cell carcinoma. Anticancer Res 41:2511–2521. https://doi.org/10.21873/anticanres.15029

    Article  CAS  PubMed  Google Scholar 

  18. Madadi P, Ross CJ, Hayden MR, Carleton BC, Gaedigk A, Leeder JS et al (2009) Pharmacogenetics of neonatal opioid toxicity following maternal use of codeine during breastfeeding: a case-control study. Clin Pharmacol Ther 85:31–35. https://doi.org/10.1038/clpt.2008.157

    Article  CAS  PubMed  Google Scholar 

  19. Chatzistefanidis D, Lazaros L, Giaka K, Nakou I, Tzoufi M, Georgiou I et al (2016) UGT1A6- and UGT2B7-related valproic acid pharmacogenomics according to age groups and total drug concentration levels. Pharmacogenomics 17:827–835. https://doi.org/10.2217/pgs-2016-0014

    Article  CAS  PubMed  Google Scholar 

  20. Izukawa T, Nakajima M, Fujiwara R, Yamanaka H, Fukami T, Takamiya M et al (2009) Quantitative analysis of UDP-glucuronosyltransferase (UGT) 1A and UGT2B expression levels in human livers. Drug Metab Dispos 37:1759–1768. https://doi.org/10.1124/dmd.109.027227

    Article  CAS  PubMed  Google Scholar 

  21. Barbier O, Duran-Sandoval D, Pineda-Torra I, Kosykh V, Fruchart JC, Staels B (2003) Peroxisome proliferator-activated receptor alpha induces hepatic expression of the human bile acid glucuronidating UDP-glucuronosyltransferase 2B4 enzyme. J Biol Chem 278:32852–32860. https://doi.org/10.1074/jbc.M305361200

    Article  CAS  PubMed  Google Scholar 

  22. Barbier O, Girard H, Inoue Y, Duez H, Villeneuve L, Kamiya A et al (2005) Hepatic expression of the UGT1A9 gene is governed by hepatocyte nuclear factor 4alpha. Mol Pharmacol 67:241–249. https://doi.org/10.1124/mol.104.003863

    Article  CAS  PubMed  Google Scholar 

  23. Li Y, Buckley D, Wang S, Klaassen CD, Zhong XB (2009) Genetic polymorphisms in the TATA box and upstream phenobarbital-responsive enhancer module of the UGT1A1 promoter have combined effects on UDP-glucuronosyltransferase 1A1 transcription mediated by constitutive androstane receptor, pregnane X receptor, or glucocorticoid receptor in human liver. Drug Metab Dispos 37:1978–1986. https://doi.org/10.1124/dmd.109.027409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee SH, Athavankar S, Cohen T, Piran R, Kiselyuk A, Levine F (2013) Identification of alverine and benfluorex as HNF4α activators. ACS Chem Biol 8:1730–1736. https://doi.org/10.1021/cb4000986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Saeki M, Saito Y, **no H, Sai K, Kaniwa N, Ozawa S et al (2005) Genetic polymorphisms of UGT1A6 in a Japanese population. Drug Metab Pharmacokinet 20:85–90. https://doi.org/10.2133/dmpk.20.85

    Article  PubMed  Google Scholar 

  26. Saito Y, Sai K, Maekawa K, Kaniwa N, Shirao K, Hamaguchi T et al (2009) Close association of UGT1A9 IVS1+399C>T with UGT1A1*28, *6, or *60 haplotype and its apparent influence on 7-ethyl-10-hydroxycamptothecin (SN-38) glucuronidation in Japanese. Drug Metab Dispos 37:272–276. https://doi.org/10.1124/dmd.108.024208

    Article  CAS  PubMed  Google Scholar 

  27. Du Z, Xu H, Zhao P, Wang J, Xu Q, Liu M (2021) Influence of UGT2B7 and UGT1A6 polymorphisms on plasma concentration to dose ratio of valproic acid in Chinese epileptic children. Xenobiotica 51:859–864. https://doi.org/10.1080/00498254.2021.1931554

    Article  CAS  PubMed  Google Scholar 

  28. Saito K, Moriya H, Sawaguchi T, Hayakawa T, Nakahara S, Goto A et al (2006) Haplotype analysis of UDP-glucuronocyltransferase 2B7 gene (UGT2B7) polymorphisms in healthy Japanese subjects. Clin Biochem 39:303–308. https://doi.org/10.1016/j.clinbiochem.2006.01.002

    Article  CAS  PubMed  Google Scholar 

  29. Pacheco PR, Brilhante MJ, Ballart C, Sigalat F, Polena H, Cabral R et al (2009) UGT1A1, UGT1A6 and UGT1A7 genetic analysis: repercussion for irinotecan pharmacogenetics in the São Miguel Island population (Azores, Portugal). Mol Diagn Ther 13:261–268. https://doi.org/10.2165/11317170-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  30. Yang J, Cai L, Huang H, Liu B, Wu Q (2012) Genetic variations and haplotype diversity of the UGT1 gene cluster in the Chinese population. PLoS ONE 7:e33988. https://doi.org/10.1371/journal.pone.0033988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Baes M, Gulick T, Choi HS, Martinoli MG, Simha D, Moore DD (1994) A new orphan member of the nuclear hormone-receptor superfamily that interacts with a subset of retinoic acid response elements. Mol Cell Biol 14:1544–1552. https://doi.org/10.1128/mcb.14.3.1544-1552.1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kritis AA, Argyrokastritis A, Moschonas NK, Power S, Katrakili N, Zannis VI et al (1996) Isolation and characterization of a third isoform of human hepatocyte nuclear factor 4. Gene 173:275–280. https://doi.org/10.1016/0378-1119(96)00183-7

    Article  CAS  PubMed  Google Scholar 

  33. Sato K, Sugawara A, Kudo M, Uruno A, Ito S, Takeuchi K (2004) Expression of peroxisome proliferator-activated receptor isoform proteins in the rat kidney. Hypertens Res 27:417–425. https://doi.org/10.1291/hypres.27.417

    Article  CAS  PubMed  Google Scholar 

  34. Miki Y, Suzuki T, Tazawa C, Blumberg B, Sasano H (2005) Steroid and xenobiotic receptor (SXR), cytochrome P450 3A4 and multidrug resistance gene 1 in human adult and fetal tissues. Mol Cell Endocrinol 231:75–85. https://doi.org/10.1016/j.mce.2004.12.005

    Article  CAS  PubMed  Google Scholar 

  35. Shelby MK, Cherrington NJ, Vansell NR, Klaassen CD (2003) Tissue mRNA expression of the rat UDP-glucuronosyltransferase gene family. Drug Metab Dispos 31:326–333. https://doi.org/10.1124/dmd.31.3.326

    Article  CAS  PubMed  Google Scholar 

  36. Court MH (2010) Interindividual variability in hepatic drug glucuronidation: studies into the role of age, sex, enzyme inducers, and genetic polymorphism using the human liver bank as a model system. Drug Metab Rev 42:209–224. https://doi.org/10.3109/03602530903209288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Neumann E, Mehboob H, Ramírez J, Mirkov S, Zhang M, Liu W (2016) Age-dependent hepatic UDP-glucuronosyltransferase gene expression and activity in children. Front Pharmacol 7:437. https://doi.org/10.3389/fphar.2016.00437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Little JM, Kurkela M, Sonka J, Jäntti S, Ketola R, Bratton S et al (2004) Glucuronidation of oxidized fatty acids and prostaglandins B1 and E2 by human hepatic and recombinant UDP-glucuronosyltransferases. J Lipid Res 45:1694–1703. https://doi.org/10.1194/jlr.M400103-JLR200

    Article  CAS  PubMed  Google Scholar 

  39. Alexanian A, Rufanova VA, Miller B, Flasch A, Roman RJ, Sorokin A (2009) Down-regulation of 20-HETE synthesis and signaling inhibits renal adenocarcinoma cell proliferation and tumor growth. Anticancer Res 29:3819–3824

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Hirofumi Hamano at the Department of Pharmacy, Okayama University Hospital, Japan for hel** with the analyses using bioinformatic data and the members of the Department of Urology at Okayama University Hospital, Japan, for their assistance in collecting patient samples and information. We would also like to thank the Central Research Laboratory, Okayama University Medical School, Japan, for providing analytical instruments, and Editage (ww.editage.jp) for English language editing.

Funding

This work was supported by the JSPS KAKENHI (Grant-in-Aid for Young Scientists, Grant number 20K16043) and the Research Foundation of Pharmaceutical Science.

Author information

Authors and Affiliations

Authors

Contributions

JM: Conceptualization, methodology, data curation, writing—original draft, and funding acquisition. AN: Formal analysis and data curation. SW and HU: Investigation and resources. SS and NI: writing—review & editing. TT, SU, MK, MF, TK, MA, YZ, and NA: writing—review & editing and supervision. KW: Investigation, writing—review & editing, and supervision. YN: Resources, writing—review & editing, and supervision. All authors have read and approved the final article.

Corresponding author

Correspondence to Jun Matsumoto.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences of Okayama University Hospital, Japan (February 14, 2018/No. 1802–033).

Consent to participate

Patients provided informed consent for participating in the study and were given the opportunity to opt out of this study at their will.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 636 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsumoto, J., Nishimoto, A., Watari, S. et al. Significance of UGT1A6, UGT1A9, and UGT2B7 genetic variants and their mRNA expression in the clinical outcome of renal cell carcinoma. Mol Cell Biochem 478, 1779–1790 (2023). https://doi.org/10.1007/s11010-022-04637-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04637-4

Keywords

Navigation