Log in

Arg913Gln of SLC12A3 gene promotes development and progression of end-stage renal disease in Chinese type 2 diabetes mellitus

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Whether the Arg913Gln variation (rs11643718, G/A) of SLC12A3 contributes to diabetic nephropathy (DN) remains controversial. We undertook a case–control study to evaluate the association of the SLC12A3-Arg913Gln variation with the risk of end-stage renal disease (ESRD) in Chinese type 2 diabetes mellitus (T2DM) patients undergoing hemodialysis, and analyzed the genotype–phenotype interaction. Unrelated Chinese T2DM patients (n = 372) with diabetic retinopathy were classified into the non-DN (control) group (n = 151; duration of T2DM >15 years, no signs of renal involvement) and the DN–ESRD group (n = 221; ESRD due to T2DM, receiving hemodialysis). Polymerase chain reaction-direct sequencing was used to genotype the SLC12A3-Arg913Gln variation for all participants. The frequency of the GA+AA genotype in the DN–ESRD group was significantly higher than that of the non-DN group (23.1 vs. 9.9%; adjusted OR 2.2 (95% CI 1.3–4.5), P = 0.019). In the non-DN group, GA+AA carriers had a significantly higher urinary albumin excretion rate (UAER) and diastolic blood pressure compared with GG carriers (both P < 0.05). The SLC12A3-Arg913Gln variation may be associated with increased blood pressure and UAER and, therefore, could be used to predict the development and progression of DN–ESRD in Chinese T2DM patients undergoing hemodialysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Collins AJ, Foley RN, Herzog C, Chavers B, Gilbertson D, Herzog C, Ishani A, Johansen K, Kasiske B, Kutner N, Liu J, St Peter W, Ding S, Guo H, Kats A, Lamb K, Li S, Li S, Roberts T, Skeans M, Snyder J, Solid C, Thompson B, Weinhandl E, **ong H, Yusuf A, Zaun D, Arko C, Chen SC, Daniels F, Ebben J, Frazier E, Hanzlik C, Johnson R, Sheets D, Wang X, Forrest B, Constantini E, Everson S, Eggers P, Agodoa L (2013) US Renal Data System 2012 Annual Data Report. Am J Kidney Dis 61(Suppl 1):A7, e1-476

    PubMed  Google Scholar 

  2. Gilg J, Castledine C, Fogarty D, Feest T, Fogarty D (2011) UK Renal Registry 13th Annual Report (December 2010): Chapter 1: UK RRT incidence in 2009: National and centre-specific analyses. Nephron Clin Pract 119(Suppl 2):c1-25

  3. Liu ZH (2013) Nephrology in china. Nat Rev Nephrol 9(9):523–528

    Article  PubMed  Google Scholar 

  4. Placha G, Warram JH, Canani LH, Krolewski AS (2005) Evidence for different susceptibility genes for proteinuria and ESRD in type 2 diabetes. Adv Chronic Kidney Dis 12(2):155–169

    Article  PubMed  Google Scholar 

  5. Liu L, Zheng T, Wang F, Wang N, Song Y, Li M, Li L, Jiang J, Zhao W (2010) Pro12Ala polymorphism in the PPARG gene contributes to the development of diabetic nephropathy in Chinese type 2 diabetes. Diabetes Care 33(1):144–149

    Article  CAS  PubMed  Google Scholar 

  6. Zhuang L, Li M, Yu C, Li C, Zhao M, Lu M, Zheng T, Zhang R, Zhao W, Bao Y, **ang K, Jia W, Wang N, Liu L (2014) The Leu72Met polymorphism of the GHRL gene prevents the development of diabetic nephropathy in Chinese patients with type 2 diabetes mellitus. Mol Cell Biochem 387(1–2):19–25

    Article  CAS  PubMed  Google Scholar 

  7. Lu M, Zhang J, Li M, Ge X, Dai X, Zhao J, Fu M, Wang T, Fang X, Li C, Zhang R, Zhao W, Zheng T, Wang F, Yu M, Lei T, Wang N, Bao Y, Liu L, Liu Y, Jia W (2016) The angiotensin-I converting enzyme gene I/D variation contributes to end-stage renal disease risk in Chinese patients with type 2 diabetes receiving hemodialysis. Mol Cell Biochem 422(1–2):181–188

    Article  CAS  PubMed  Google Scholar 

  8. Chandie Shaw PK, Baboe F, van Es LA, van der Vijver JC, van de Ree MA, de Jonge N, Rabelink TJ (2006) South Asian type 2 diabetic patients have higher incidence and faster progression of renal disease compared with Dutch-European diabetic patients. Diabetes Care 29(6):1383–1385

    Article  PubMed  Google Scholar 

  9. Mastroianni N, De Fusco M, Zollo M, Arrigo G, Zuffardi O, Bettinelli A, Ballabio A, Casari G (1996) Molecular cloning, expression pattern, and chromosomal localization of the human Na-Cl thiazide-sensitive cotransporter (SLC12A3). Genomics 35(3):486–493

    Article  CAS  PubMed  Google Scholar 

  10. Simon DB, Nelson-Williams C, BiaMJ Ellison D, Karet FE, Molina AM, Vaara I, Iwata F, CushnerHM Koolen M, Gainza FJ, Gitleman HJ, Lifton RP (1996) Gitelman’s variant of Bartter’s syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na-Cl cotransporter. Nature Genet 12(1):24–30

    Article  CAS  PubMed  Google Scholar 

  11. Tanaka N, Babazono T, Saito S, Sekine A, Tsunoda T, Haneda M, Tanaka Y, Fujioka T, Kaku K, KawamoriR Kikkawa R, Iwamoto Y, Nakamura Y, Maeda S (2003) Association of solute carrier family 12 (sodium/chloride) member 3 with diabetic nephropathy, identified by genome-wide analyses of single nucleotide polymorphisms. Diabetes 52(11):2848–2853

    Article  CAS  PubMed  Google Scholar 

  12. Nishiyama K, Tanaka Y, Nakajima K, Mokubo A, Atsumi Y, Matsuoka K, Watada H, Hirose T, NomiyamaT Maeda S, Kawamori R (2005) Polymorphism of the solute carrier family 12 (sodium/chloride transporters) member 3, SLC12A3, gene at exon 23 (+78G/A: Arg913Gln) is associated with elevation of urinary albumin excretion in Japanese patients with type 2 diabetes: a 10-year longitudinal study. Diabetologia 48(7):1335–1338

    Article  CAS  PubMed  Google Scholar 

  13. Melander O, Orho-Melander M, Bengtsson K, Lindblad U, Râstam L, Groop L, Hulthén UL (2000) Genetic variants of thiazide-sensitive NaCl-cotransporter in Gitelman’s syndrome and primary hypertension. Hypertension 36(3):389–394

    Article  CAS  PubMed  Google Scholar 

  14. Matsuo A, Katsuya T, Ishikawa K, Sugimoto K, Iwashima Y, Yamamoto K, Ohishi M, Rakugi H, Ogihara T (2004) G2736A polymorphism of thiazide-sensitive Na-Cl cotransporter gene predisposes to hypertension in young women. J Hypertens 22(11):2123–2127

    Article  CAS  PubMed  Google Scholar 

  15. Matayoshi T, Kamide K, Takiuchi S, Yoshii M, Miwa Y, Takami Y, Tanaka C, Banno M, Horio T, Nakamura S, Nakahama H, Yoshihara F, Inenaga T, Miyata T, Kawano Y (2004) The thiazide-sensitive Na(+)-Cl(−) cotransporter gene, C1784T, and adrenergic receptor-beta3 gene, T727C, may be gene polymorphisms susceptible to the antihypertensive effect of thiazide diuretics. Hypertens Res 27(11):821–833

    Article  CAS  PubMed  Google Scholar 

  16. An C, Liang J, Zhang K, Su X (2016) Polymorphisms in the SLC12A3 gene encoding sodium- chloride cotransporter are associated with hypertension: a family-based study in the Mongolian population. Kidney Blood Press Res 41(1):18–28

    Article  CAS  PubMed  Google Scholar 

  17. Kim JH, Shin HD, Park BL, Moon MK, Cho YM, Hwang YH, Oh KW, Kim SY, Lee HK, Ahn C, Park KS (2006) SLC12A3 (solute carrier family 12 member sodium/chloride 3) polymorphisms are associated with end-stage renal disease in diabetic nephropathy. Diabetes 55(3):843–848

    Article  CAS  PubMed  Google Scholar 

  18. Ng DP, Nurbaya S, Choo S, Koh D, Chia KS, Krolewski AS (2008) Genetic variation at the SLC12A3 locus is unlikely to explain risk for advanced diabetic nephropathy in Caucasians with type 2 diabetes. Nephrol Dial Transplant 23(7):2260–2264

    Article  CAS  PubMed  Google Scholar 

  19. Seman NA, He B, Ojala JR, Mohamud WN, Östenson CG, Brismar K, Gu HF (2014) Genetic and biological effects of sodium-chloride cotransporter (SLC12A3) in diabetic nephropathy. Am J Nephrol 40(5):408–416

    Article  PubMed  Google Scholar 

  20. Ringel J, Beige J, Kunz R, Distler A, Sharma AM (1997) Genetic variants of the renin-angiotensin system, diabetic nephropathy and hypertension. Diabetologia 40(2):193–199

    Article  CAS  PubMed  Google Scholar 

  21. Buraczynska M, Ksiazek P, Drop A, Zaluska W, Spasiewicz D, Ksiazek A (2006) Genetic polymorphisms of the renin-angiotensin system in end-stage renal disease. Nephrol Dial Transplant 21(4):979–983

    Article  CAS  PubMed  Google Scholar 

  22. American Diabetes Association (2010) Diagnosis and classification of diabetes mellitus. Diabetes Care 33(Suppl 1):S62–S69

    Article  PubMed Central  Google Scholar 

  23. Astor BC, Muntner P, Levin A, Eustace JA, Coresh J (2002) Association of kidney function with anemia: The Third National Health and Nutrition Examination Survey (1988–1994). Arch Intern Med 162(12):1401–1408

    Article  PubMed  Google Scholar 

  24. KEEP 2004 Data Report (2005) Am J Kidney Dis, 45(3, Suppl 2):S8–S13, S76–S77

  25. Thomas MC, Tsalamandris C, MacIsaac RJ, Jerums G (2006) Pathogenesis and treatment of kidney disease and hypertension: the epidemiology of hemoglobin levels in patients with type 2 diabetes. Am J Kidney Dis 48(4):537–545

    Article  CAS  PubMed  Google Scholar 

  26. Jones RL, Peterson CM (1981) Hematologic alterations in diabetes mellitus. Am J Med 70(2):339–352

    Article  CAS  PubMed  Google Scholar 

  27. Thomas MC, Cooper ME, Tsalamandris C, MacIsaac R, Jerums G (2005) Anemia with impaired erythropoietin response in diabetic patients. Arch Intern Med 165(4):466–469

    Article  PubMed  Google Scholar 

  28. Mogensen CE (1998) Combined high blood pressure and glucose in type 2 diabetes: double jeopardy. British trial shows clear effects of treatment, especially blood pressure reduction. BMJ 317(7160):693–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Allen TJ, Cooper ME, Lan HY (2004) Use of genetic mouse models in the study of diabetic nephropathy. Curr Diabetes Rep 4(6):435–440

    Article  Google Scholar 

  30. Mogensen CE, Christensen CK, Vittinghus E (1983) The stages in diabetic renal disease. With emphasis on the stage of incipient diabetic nephropathy. Diabetes 32(Suppl 2):64–78

    Article  PubMed  Google Scholar 

  31. Adler AI, Stevens RJ, Manley SE, Bilous RW, Cull CA, Holman RR, UKPDS GROUP (2003) Development and progression of nephropathy in type 2 diabetes: The United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney Int 63(1):225–232

    Article  PubMed  Google Scholar 

  32. Kahle KT, Flores B, Bharucha-Goebel D, Zhang J, Donkervoort S, Hegde M, Hussain G, Duran D, Liang B, Sun D, Bönnemann CG, Delpire E (2016) Peripheral motor neuropathy is associated with defective kinase regulation of the KCC3 cotransporter. Sci Signal 9(439):ra77

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Project of National Natural Science Foundation of China (81471012, 81270876, 30771022 and 30971384), the Shanghai Leading Talent (SLJ15055), and the Program of Education Research from Shanghai Jiaotong University of Medicine (YB150612). Y. Liu was supported by National Institute of Diabetes and Digestive and Kidney Diseases Grant SC1DK104821.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Limei Liu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding publication of this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Zhuang, L., Li, M. et al. Arg913Gln of SLC12A3 gene promotes development and progression of end-stage renal disease in Chinese type 2 diabetes mellitus. Mol Cell Biochem 437, 203–210 (2018). https://doi.org/10.1007/s11010-017-3120-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-3120-z

Keywords

Navigation