Log in

Toll-like receptor 4 mediates vascular remodeling in hyperhomocysteinemia

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Although hyperhomocysteinemia (HHcy) is known to promote downstream pro-inflammatory cytokine elevation, the precise mechanism is still unknown. One of the possible receptors that could have significant attention in the field of hypertension is toll-like receptor 4 (TLR-4). TLR-4 is a cellular membrane protein that is ubiquitously expressed in all cell types of the vasculature. Its mutation can attenuate the effects of HHcy-mediated vascular inflammation and mitochondria- dependent cell death that suppresses hypertension. In this review, we observed that HHcy induces vascular remodeling through immunological adaptation, promoting inflammatory cytokine up-regulation (IL-1β, IL-6, TNF-α) and initiation of mitochondrial dysfunction leading to cell death and chronic vascular inflammation. The literature suggests that HHcy promotes TLR-4-driven chronic vascular inflammation and mitochondria-mediated cell death inducing peripheral vascular remodeling. In the previous studies, we have characterized the role of TLR-4 mutation in attenuating vascular remodeling in hyperhomocysteinemia. This review includes, but is not limited to, the physiological synergistic aspects of the downstream elevation of cytokines found within the vascular inflammatory cascade. These events subsequently induce mitochondrial dysfunction defined by excessive mitochondrial fission and mitochondrial apoptosis contributing to vascular remodeling followed by hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Steed MM, Tyagi SC (2011) Mechanisms of cardiovascular remodeling in hyperhomocysteinemia. Antioxid Redox Signal 15(7):1927–1943. doi:10.1089/ars.2010.3721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Friso S, Carvajal CA, Fardella CE, Olivieri O (2015) Epigenetics and arterial hypertension: the challenge of emerging evidence. Transl Res 165(1):154–165. doi:10.1016/j.trsl.2014.06.007

    Article  CAS  PubMed  Google Scholar 

  3. Wise IA, Charchar FJ (2016) Epigenetic modifications in essential hypertension. Int J Mol Sci 17(4):451. doi:10.3390/ijms17040451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Kulkarni A, Chavan-Gautam P, Mehendale S, Yadav H, Joshi S (2011) Global DNA methylation patterns in placenta and its association with maternal hypertension in pre-eclampsia. DNA Cell Biol 30(2):79–84. doi:10.1089/dna.2010.1084

    Article  CAS  PubMed  Google Scholar 

  5. Pacana T, Cazanave S, Verdianelli A, Patel V, Min HK, Mirshahi F, Quinlivan E, Sanyal AJ (2015) Dysregulated hepatic methionine metabolism drives homocysteine elevation in diet-induced nonalcoholic fatty liver disease. PLoS ONE 10(8):e0136822. doi:10.1371/journal.pone.0136822

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Yang F, Tan HM, Wang H (2005) Hyperhomocysteinemia and atherosclerosis. Sheng li xue bao: [Acta physiologica Sinica] 57(2):103–114

    CAS  Google Scholar 

  7. Hankey GJ, Eikelboom JW (1999) Homocysteine and vascular disease. Lancet 354(9176):407–413. doi:10.1016/S0140-6736(98)11058-9

    Article  CAS  PubMed  Google Scholar 

  8. Robertson J, Iemolo F, Stabler SP, Allen RH, Spence JD (2005) Vitamin B12, homocysteine and carotid plaque in the era of folic acid fortification of enriched cereal grain products. CMAJ 172(12):1569–1573. doi:10.1503/cmaj.045055

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sengwayo D, Moraba M, Motaung S (2013) Association of homocysteinaemia with hyperglycaemia, dyslipidaemia, hypertension and obesity. Cardiovasc J Afr 24(7):265–269. doi:10.5830/CVJA-2013-059

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lim U, Cassano PA (2002) Homocysteine and blood pressure in the Third National Health and Nutrition Examination Survey, 1988–1994. Am J Epidemiol 156(12):1105–1113

    Article  PubMed  Google Scholar 

  11. Li Z, Guo X, Chen S, Zheng L, Yang H, Sun G, Yu S, Li W, Zhou L, Wang J, Hu W, Sun Y (2015) Hyperhomocysteinemia independently associated with the risk of hypertension: a cross-sectional study from rural China. J Hum Hypertens. doi:10.1038/jhh.2015.75

    PubMed Central  Google Scholar 

  12. Splaver A, Lamas GA, Hennekens CH (2004) Homocysteine and cardiovascular disease: biological mechanisms, observational epidemiology, and the need for randomized trials. Am Heart J 148(1):34–40. doi:10.1016/j.ahj.2004.02.004

    Article  CAS  PubMed  Google Scholar 

  13. Curro M, Gangemi C, Gugliandolo A, Risitano R, Ferlazzo N, Ientile R, Caccamo D (2015) Transglutaminase 2 is involved in homocysteine-induced activation of human THP-1 monocytes. Free Radic Res 49(3):299–308. doi:10.3109/10715762.2014.1002495

    Article  CAS  PubMed  Google Scholar 

  14. Zhang D, Fang P, Jiang X, Nelson J, Moore JK, Kruger WD, Berretta RM, Houser SR, Yang X, Wang H (2012) Severe hyperhomocysteinemia promotes bone marrow-derived and resident inflammatory monocyte differentiation and atherosclerosis in LDLr/CBS-deficient mice. Circ Res 111(1):37–49. doi:10.1161/CIRCRESAHA.112.269472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Scherer EB, Loureiro SO, Vuaden FC, da Cunha AA, Schmitz F, Kolling J, Savio LE, Bogo MR, Bonan CD, Netto CA, Wyse AT (2014) Mild hyperhomocysteinemia increases brain acetylcholinesterase and proinflammatory cytokine levels in different tissues. Mol Neurobiol 50(2):589–596. doi:10.1007/s12035-014-8660-6

    Article  CAS  PubMed  Google Scholar 

  16. McCarthy CG, Webb RC (2015) The toll of the gridiron: damage-associated molecular patterns and hypertension in American football. FASEB J. doi:10.1096/fj.15-279588

    PubMed  PubMed Central  Google Scholar 

  17. De Batista PR, Palacios R, Martin A, Hernanz R, Medici CT, Silva MA, Rossi EM, Aguado A, Vassallo DV, Salaices M, Alonso MJ (2014) Toll-like receptor 4 upregulation by angiotensin II contributes to hypertension and vascular dysfunction through reactive oxygen species production. PLoS ONE 9(8):e104020. doi:10.1371/journal.pone.0104020

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tsai HY, Lin CP, Huang PH, Li SY, Chen JS, Lin FY, Chen JW, Lin SJ (2016) Coenzyme Q10 attenuates high glucose-induced endothelial progenitor cell dysfnction through AMP-activated protein kinase pathways. J Diabet Res 2016:6384759. doi:10.1155/2016/6384759

    Article  Google Scholar 

  19. Ahsan A, Han G, Pan J, Liu S, Padhiar AA, Chu P, Sun Z, Zhang Z, Sun B, Wu J, Irshad A, Lin Y, Peng J, Tang Z (2015) Phosphocreatine protects endothelial cells from oxidized low-density lipoprotein-induced apoptosis by modulating the PI3 K/Akt/eNOS pathway. Apoptosis 20(12):1563–1576. doi:10.1007/s10495-015-1175-4

    Article  CAS  PubMed  Google Scholar 

  20. Deng XU, **a KE, Chen PO, Ali Sheikh MS, Yang DF, Li SM, Yang TL (2015) Reversion of left ventricle remodeling in spontaneously hypertensive rats by valsartan is associated with the inhibition of caspase-3, -8 and -9 activities. Biomed Rep 3(4):533–536. doi:10.3892/br.2015.458

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Eirin A, Lerman A, Lerman LO (2015) Mitochondria: a pathogenic paradigm in hypertensive renal disease. Hypertension 65(2):264–270. doi:10.1161/HYPERTENSIONAHA.114.04598

    Article  CAS  PubMed  Google Scholar 

  22. Marzetti E, Csiszar A, Dutta D, Balagopal G, Calvani R, Leeuwenburgh C (2013) Role of mitochondrial dysfunction and altered autophagy in cardiovascular aging and disease: from mechanisms to therapeutics. Am J Physiol Heart Circ Physiol 305(4):H459–H476. doi:10.1152/ajpheart.00936.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pradeep H, Rajanikant GK (2013) In silico identification of potential dynamin-related protein 1 antagonists: implications for diseases involving mitochondrial dysfunction. Comb Chem High Throughput Screen 17(1):25–34

    Google Scholar 

  24. Trudeau K, Molina AJ, Guo W, Roy S (2010) High glucose disrupts mitochondrial morphology in retinal endothelial cells: implications for diabetic retinopathy. Am J Pathol 177(1):447–455. doi:10.2353/ajpath.2010.091029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pangare M, Makino A (2012) Mitochondrial function in vascular endothelial cell in diabetes. J Smooth Muscle Res 48(1):1–26

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ganapathy PS, Perry RL, Tawfik A, Smith RM, Perry E, Roon P, Bozard BR, Ha Y, Smith SB (2011) Homocysteine-mediated modulation of mitochondrial dynamics in retinal ganglion cells. Invest Ophthalmol Vis Sci 52(8):5551–5558. doi:10.1167/iovs.11-7256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang Y, Shi S, Dong S, Wu J, Song M, Zhong X, Liu Y (2015) Sodium hydrosulfide attenuates hyperhomocysteinemia rat myocardial injury through cardiac mitochondrial protection. Mol Cell Biochem 399(1–2):189–200. doi:10.1007/s11010-014-2245-6

    Article  CAS  PubMed  Google Scholar 

  28. van Varik BJ, Rennenberg RJ, Reutelingsperger CP, Kroon AA, de Leeuw PW, Schurgers LJ (2012) Mechanisms of arterial remodeling: lessons from genetic diseases. Front Genet 3:290. doi:10.3389/fgene.2012.00290

    PubMed  PubMed Central  Google Scholar 

  29. van den Akker J, Schoorl MJ, Bakker EN, Vanbavel E (2010) Small artery remodeling: current concepts and questions. J Vasc Res 47(3):183–202. doi:10.1159/000255962

    Article  PubMed  Google Scholar 

  30. van Eys GJ, Niessen PM, Rensen SS (2007) Smoothelin in vascular smooth muscle cells. Trends Cardiovasc Med 17(1):26–30. doi:10.1016/j.tcm.2006.11.001

    Article  PubMed  CAS  Google Scholar 

  31. Iyemere VP, Proudfoot D, Weissberg PL, Shanahan CM (2006) Vascular smooth muscle cell phenotypic plasticity and the regulation of vascular calcification. J Intern Med 260(3):192–210. doi:10.1111/j.1365-2796.2006.01692.x

    Article  CAS  PubMed  Google Scholar 

  32. Willis AI, Pierre-Paul D, Sumpio BE, Gahtan V (2004) Vascular smooth muscle cell migration: current research and clinical implications. Vasc Endovasc Surg 38(1):11–23

    Article  CAS  Google Scholar 

  33. Shanahan CM, Cary NR, Metcalfe JC, Weissberg PL (1994) High expression of genes for calcification-regulating proteins in human atherosclerotic plaques. J Clin Investig 93(6):2393–2402. doi:10.1172/JCI117246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xu J, Shi GP (2014) Vascular wall extracellular matrix proteins and vascular diseases. Biochem Biophys Acta 1842(11):2106–2119. doi:10.1016/j.bbadis.2014.07.008

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Nichols WW (2005) Clinical measurement of arterial stiffness obtained from noninvasive pressure waveforms. Am J Hypertens 18(1 Pt 2):3S–10S. doi:10.1016/j.amjhyper.2004.10.009

    Article  PubMed  Google Scholar 

  36. Intengan HD, Schiffrin EL (2000) Structure and mechanical properties of resistance arteries in hypertension: role of adhesion molecules and extracellular matrix determinants. Hypertension 36(3):312–318

    Article  CAS  PubMed  Google Scholar 

  37. Intengan HD, Schiffrin EL (2001) Vascular remodeling in hypertension: roles of apoptosis, inflammation, and fibrosis. Hypertension 38(3 Pt 2):581–587

    Article  CAS  PubMed  Google Scholar 

  38. Schiffrin EL (2015) Mechanisms of remodelling of small arteries, antihypertensive therapy and the immune system in hypertension. Clin Invest Med 38(6):E394–E402

    Article  PubMed  Google Scholar 

  39. Csiszar A, Lehoux S, Ungvari Z (2009) Hemodynamic forces, vascular oxidative stress, and regulation of BMP-2/4 expression. Antioxid Redox Signal 11(7):1683–1697. doi:10.1089/ARS.2008.2401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Urschel K, Cicha I, Daniel WG, Garlichs CD (2012) Shear stress patterns affect the secreted chemokine profile in endothelial cells. Clin Hemorheol Microcirc 50(1–2):143–152. doi:10.3233/CH-2011-1450

    PubMed  Google Scholar 

  41. Endemann DH, Schiffrin EL (2004) Endothelial dysfunction. J Am Soc Nephrol: JASN 15(8):1983–1992. doi:10.1097/01.ASN.0000132474.50966.DA

    Article  CAS  PubMed  Google Scholar 

  42. Familtseva A, Kalani A, Chaturvedi P, Tyagi N, Metreveli N, Tyagi SC (2014) Mitochondrial mitophagy in mesenteric artery remodeling in hyperhomocysteinemia. Physiol Rep 2(4):e00283. doi:10.14814/phy2.283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Familtseva A, Chaturvedi P, Kalani A, Jeremic N, Metreveli N, Kunkel GH, Tyagi SC (2016) Toll-like receptor 4 mutation suppresses hyperhomocysteinemia-induced hypertension. Am J Physiol Cell Physiol 311(4):C596–C606. doi:10.1152/ajpcell.00088.2016

    Article  PubMed  Google Scholar 

  44. Mazza A, Cuppini S, Schiavon L, Zuin M, Ravenni R, Balbi G, Montemurro D, Opocher G, Pelizzo MR, Colletti PM, Rubello D (2014) Hyperhomocysteinemia is an independent predictor of sub-clinical carotid vascular damage in subjects with grade-1 hypertension. Endocrine 46(2):340–346. doi:10.1007/s12020-013-0063-3

    Article  CAS  PubMed  Google Scholar 

  45. Nelson J, Wu Y, Jiang X, Berretta R, Houser S, Choi E, Wang J, Huang J, Yang X, Wang H (2015) Hyperhomocysteinemia suppresses bone marrow CD34 +/VEGF receptor 2+ cells and inhibits progenitor cell mobilization and homing to injured vasculature-a role of beta1-integrin in progenitor cell migration and adhesion. FASEB J 29(7):3085–3099. doi:10.1096/fj.14-267989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Saha S, Chakraborty PK, **ong X, Dwivedi SK, Mustafi SB, Leigh NR, Ramchandran R, Mukherjee P, Bhattacharya R (2016) Cystathionine beta-synthase regulates endothelial function via protein S-sulfhydration. FASEB J 30(1):441–456. doi:10.1096/fj.15-278648

    Article  CAS  PubMed  Google Scholar 

  47. Holst-Schumacher I, Monge-Rojas R, Cambronero-Gutierrez P, Brenes G (2005) Genetic, dietary, and other lifestyle determinants of serum homocysteine levels in young adults in Costa Rica. Pan Am J Public Health 17(4):263–270

    Article  Google Scholar 

  48. Yang B, Fan S, Zhi X, Wang Y, Wang Y, Zheng Q, Sun G (2015) Prevalence of hyperhomocysteinemia in China: a systematic review and meta-analysis. Nutrients 7(1):74–90. doi:10.3390/nu7010074

    Article  CAS  Google Scholar 

  49. Selhub J (2006) The many facets of hyperhomocysteinemia: studies from the Framingham cohorts. J Nutr 136(6 Suppl):1726S–1730S

    CAS  PubMed  Google Scholar 

  50. Jacques PF, Rosenberg IH, Rogers G, Selhub J, Bowman BA, Gunter EW, Wright JD, Johnson CL (1999) Serum total homocysteine concentrations in adolescent and adult Americans: results from the third National Health and Nutrition Examination Survey. Am J Clin Nutr 69(3):482–489

    CAS  PubMed  Google Scholar 

  51. Giltay EJ, Hoogeveen EK, Elbers JM, Gooren LJ, Asscheman H, Stehouwer CD (1998) Effects of sex steroids on plasma total homocysteine levels: a study in transsexual males and females. J Clin Endocrinol Metab 83(2):550–553. doi:10.1210/jcem.83.2.4574

    Article  CAS  PubMed  Google Scholar 

  52. Mijatovic V, Kenemans P, Jakobs C, van Baal WM, Peters-Muller ER, van der Mooren MJ (1998) A randomized controlled study of the effects of 17beta-estradiol-dydrogesterone on plasma homocysteine in postmenopausal women. Obstet Gynecol 91(3):432–436

    Article  CAS  PubMed  Google Scholar 

  53. Shmeleva VM, Kapustin SI, Papayan LP, Sobczynska-Malefora A, Harrington DJ, Savidge GF (2003) Prevalence of hyperhomocysteinemia and the MTHFR C677T polymorphism in patients with arterial and venous thrombosis from North Western Russia. Thromb Res 111(6):351–356

    Article  CAS  PubMed  Google Scholar 

  54. de Bree A, Verschuren WM, Blom HJ, Kromhout D (2001) Lifestyle factors and plasma homocysteine concentrations in a general population sample. Am J Epidemiol 154(2):150–154

    Article  PubMed  Google Scholar 

  55. Vermaak WJ, Ubbink JB, Barnard HC, Potgieter GM, van Jaarsveld H, Groenewald AJ (1990) Vitamin B-6 nutrition status and cigarette smoking. Am J Clin Nutr 51(6):1058–1061

    CAS  PubMed  Google Scholar 

  56. Mudd SH, Skovby F, Levy HL, Pettigrew KD, Wilcken B, Pyeritz RE, Andria G, Boers GH, Bromberg IL, Cerone R et al (1985) The natural history of homocystinuria due to cystathionine beta-synthase deficiency. Am J Hum Genet 37(1):1–31

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kraus JP (1998) Biochemistry and molecular genetics of cystathionine beta-synthase deficiency. Eur J Pediatr 157(Suppl 2):S50–S53

    Article  CAS  PubMed  Google Scholar 

  58. Ogier de Baulny H, Gerard M, Saudubray JM, Zittoun J (1998) Remethylation defects: guidelines for clinical diagnosis and treatment. Eur J Pediatr 157(Suppl 2):S77–S83

    Article  PubMed  Google Scholar 

  59. Kang SS, Zhou J, Wong PW, Kowalisyn J, Strokosch G (1988) Intermediate homocysteinemia: a thermolabile variant of methylenetetrahydrofolate reductase. Am J Hum Genet 43(4):414–421

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, Boers GJ, den Heijer M, Kluijtmans LA, van den Heuvel LP et al (1995) A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 10(1):111–113. doi:10.1038/ng0595-111

    Article  CAS  PubMed  Google Scholar 

  61. Kang SS, Wong PW, Norusis M (1987) Homocysteinemia due to folate deficiency. Metabolism 36(5):458–462

    Article  CAS  PubMed  Google Scholar 

  62. Selhub J, Jacques PF, Wilson PW, Rush D, Rosenberg IH (1993) Vitamin status and intake as primary determinants of homocysteinemia in an elderly population. JAMA 270(22):2693–2698

    Article  CAS  PubMed  Google Scholar 

  63. Bostom AG, Lathrop L (1997) Hyperhomocysteinemia in end-stage renal disease: prevalence, etiology, and potential relationship to arteriosclerotic outcomes. Kidney Int 52(1):10–20

    Article  CAS  PubMed  Google Scholar 

  64. Lai WK, Kan MY (2015) Homocysteine-induced endothelial dysfunction. Ann Nutr Metab 67(1):1–12. doi:10.1159/000437098

    Article  CAS  PubMed  Google Scholar 

  65. Derouiche F, Bole-Feysot C, Naimi D, Coeffier M (2014) Hyperhomocysteinemia-induced oxidative stress differentially alters proteasome composition and activities in heart and aorta. Biochem Biophys Res Commun 452(3):740–745. doi:10.1016/j.bbrc.2014.08.141

    Article  CAS  PubMed  Google Scholar 

  66. Lussana F, Betti S, D’Angelo A, De Stefano V, Fedi S, Ferrazzi P, Legnani C, Marcucci R, Palareti G, Rota LL, Sampietro F, Squizzato A, Prisco D, Cattaneo M (2013) Evaluation of the prevalence of severe hyperhomocysteinemia in adult patients with thrombosis who underwent screening for thrombophilia. Thromb Res 132(6):681–684. doi:10.1016/j.thromres.2013.09.038

    Article  CAS  PubMed  Google Scholar 

  67. Karatela RA, Sainani GS (2009) Plasma homocysteine in obese, overweight and normal weight hypertensives and normotensives. Indian Heart J 61(2):156–159

    PubMed  Google Scholar 

  68. Stehouwer CD, van Guldener C (2003) Does homocysteine cause hypertension? Clin Chem Lab Med 41(11):1408–1411. doi:10.1515/CCLM.2003.216

    Article  CAS  PubMed  Google Scholar 

  69. Sen U, Tyagi SC (2010) Homocysteine and hypertension in diabetes: does PPARgamma have a regulatory role? PPAR Res 2010:806538. doi:10.1155/2010/806538

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Tsai JC, Kuo HT, Chiu YW, Hwang SJ, Chuang HY, Chang JM, Chen HC, Lai YH (2005) Correlation of plasma homocysteine level with arterial stiffness and pulse pressure in hemodialysis patients. Atherosclerosis 182(1):121–127. doi:10.1016/j.atherosclerosis.2005.01.038

    Article  CAS  PubMed  Google Scholar 

  71. White WM, Turner ST, Bailey KR, Mosley TH, Kardia SL, Wiste HJ, Kullo IJ, Garovic VD (2013) Hypertension in pregnancy is associated with elevated homocysteine levels later in life. Am J Obstet Gynecol 209(5):e451–e457. doi:10.1016/j.ajog.2013.06.030

    Article  CAS  Google Scholar 

  72. McCarthy CG, Goulopoulou S, Wenceslau CF, Spitler K, Matsumoto T, Webb RC (2014) Toll-like receptors and damage-associated molecular patterns: novel links between inflammation and hypertension. Am J Physiol Heart Circ Physiol 306(2):H184–H196. doi:10.1152/ajpheart.00328.2013

    Article  CAS  PubMed  Google Scholar 

  73. Itani HA, Harrison DG (2015) Memories that last in hypertension. Am J Physiol Renal Physiol 308(11):F1197–F1199. doi:10.1152/ajprenal.00633.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shirai T, Hilhorst M, Harrison DG, Goronzy JJ, Weyand CM (2015) Macrophages in vascular inflammation–from atherosclerosis to vasculitis. Autoimmunity 48(3):139–151. doi:10.3109/08916934.2015.1027815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. McMaster WG, Kirabo A, Madhur MS, Harrison DG (2015) Inflammation, immunity, and hypertensive end-organ damage. Circ Res 116(6):1022–1033. doi:10.1161/CIRCRESAHA.116.303697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Takeda K, Akira S (2005) Toll-like receptors in innate immunity. Int Immunol 17(1):1–14. doi:10.1093/intimm/dxh186

    Article  CAS  PubMed  Google Scholar 

  77. Kang JY, Lee JO (2011) Structural biology of the toll-like receptor family. Annu Rev Biochem 80:917–941. doi:10.1146/annurev-biochem-052909-141507

    Article  CAS  PubMed  Google Scholar 

  78. Goulopoulou S, McCarthy CG, Webb RC (2016) Toll-like receptors in the vascular system: sensing the dangers within. Pharmacol Rev 68(1):142–167. doi:10.1124/pr.114.010090

    Article  PubMed  PubMed Central  Google Scholar 

  79. Gay NJ, Symmons MF, Gangloff M, Bryant CE (2014) Assembly and localization of toll-like receptor signalling complexes. Nat Rev Immunol 14(8):546–558. doi:10.1038/nri3713

    Article  CAS  PubMed  Google Scholar 

  80. Bryant CE, Symmons M, Gay NJ (2015) Toll-like receptor signalling through macromolecular protein complexes. Mol Immunol 63(2):162–165. doi:10.1016/j.molimm.2014.06.033

    Article  CAS  PubMed  Google Scholar 

  81. Wang Y, Song E, Bai B, Vanhoutte PM (2016) Toll-like receptors mediating vascular malfunction: lessons from receptor subtypes. Pharmacol Ther 158:91–100. doi:10.1016/j.pharmthera.2015.12.005

    Article  CAS  PubMed  Google Scholar 

  82. Kawai T, Akira S (2009) The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol 21(4):317–337. doi:10.1093/intimm/dxp017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. O’Neill LA, Golenbock D, Bowie AG (2013) The history of toll-like receptors—redefining innate immunity. Nat Rev Immunol 13(6):453–460. doi:10.1038/nri3446

    Article  PubMed  CAS  Google Scholar 

  84. Kawasaki T, Kawai T (2014) Toll-like receptor signaling pathways. Front Immunol 5:461. doi:10.3389/fimmu.2014.00461

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Ionita MG, Arslan F, de Kleijn DP, Pasterkamp G (2010) Endogenous inflammatory molecules engage toll-like receptors in cardiovascular disease. J Innate Immun 2(4):307–315. doi:10.1159/000314270

    Article  CAS  PubMed  Google Scholar 

  86. Balistreri CR, Candore G, Colonna-Romano G, Lio D, Caruso M, Hoffmann E, Franceschi C, Caruso C (2004) Role of toll-like receptor 4 in acute myocardial infarction and longevity. JAMA 292(19):2339–2340. doi:10.1001/jama.292.19.2339

    CAS  PubMed  Google Scholar 

  87. Ding Z, Liu S, Wang X, Khaidakov M, Fan Y, Deng X, **ang D, Mehta JL (2015) Lectin-like oxidized low-density lipoprotein receptor-1 regulates autophagy and Toll-like receptor 4 in the brain of hypertensive mice. J Hypertens 33 (3): 525–533; discussion 533. doi: 10.1097/HJH.0000000000000411

  88. Eissler R, Schmaderer C, Rusai K, Kuhne L, Sollinger D, Lahmer T, Witzke O, Lutz J, Heemann U, Baumann M (2011) Hypertension augments cardiac toll-like receptor 4 expression and activity. Hypertens Res 34(5):551–558. doi:10.1038/hr.2010.270

    Article  CAS  PubMed  Google Scholar 

  89. Pryshchep O, Ma-Krupa W, Younge BR, Goronzy JJ, Weyand CM (2008) Vessel-specific toll-like receptor profiles in human medium and large arteries. Circulation 118(12):1276–1284. doi:10.1161/CIRCULATIONAHA.108.789172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Dange RB, Agarwal D, Masson GS, Vila J, Wilson B, Nair A, Francis J (2014) Central blockade of TLR4 improves cardiac function and attenuates myocardial inflammation in angiotensin II-induced hypertension. Cardiovasc Res 103(1):17–27. doi:10.1093/cvr/cvu067

    Article  CAS  PubMed  Google Scholar 

  91. Bobek G, Surmon L, Mirabito KM, Makris A, Hennessy A (2015) Placental regulation of inflammation and hypoxia after TNF-alpha infusion in mice. Am J Reprod Immunol 74(5):407–418. doi:10.1111/aji.12417

    Article  CAS  PubMed  Google Scholar 

  92. Bomfim GF, Dos Santos RA, Oliveira MA, Giachini FR, Akamine EH, Tostes RC, Fortes ZB, Webb RC, Carvalho MH (2012) Toll-like receptor 4 contributes to blood pressure regulation and vascular contraction in spontaneously hypertensive rats. Clin Sci 122(11):535–543. doi:10.1042/CS20110523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hernanz R, Martinez-Revelles S, Palacios R, Martin A, Cachofeiro V, Aguado A, Garcia-Redondo L, Barrus MT, de Batista PR, Briones AM, Salaices M, Alonso MJ (2015) Toll-like receptor 4 contributes to vascular remodelling and endothelial dysfunction in angiotensin II-induced hypertension. Br J Pharmacol 172(12):3159–3176. doi:10.1111/bph.13117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Dange RB, Agarwal D, Teruyama R, Francis J (2015) Toll-like receptor 4 inhibition within the paraventricular nucleus attenuates blood pressure and inflammatory response in a genetic model of hypertension. J Neuroinflamm 12:31. doi:10.1186/s12974-015-0242-7

    Article  Google Scholar 

  95. Schneider S, Koch W, Hoppmann P, Ubrich R, Kemmner S, Steinlechner E, Heemann U, Laugwitz KL, Kastrati A, Baumann M (2015) Association of Toll-like receptor 4 polymorphism with age-dependent systolic blood pressure increase in patients with coronary artery disease. Immun Ageing 12:4. doi:10.1186/s12979-015-0031-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Sollinger D, Eissler R, Lorenz S, Strand S, Chmielewski S, Aoqui C, Schmaderer C, Bluyssen H, Zicha J, Witzke O, Scherer E, Lutz J, Heemann U, Baumann M (2014) Damage-associated molecular pattern activated Toll-like receptor 4 signalling modulates blood pressure in L-NAME-induced hypertension. Cardiovasc Res 101(3):464–472. doi:10.1093/cvr/cvt265

    Article  CAS  PubMed  Google Scholar 

  97. Pineda A, Verdin-Teran SL, Camacho A, Moreno-Fierros L (2011) Expression of toll-like receptor TLR-2, TLR-3, TLR-4 and TLR-9 is increased in placentas from patients with preeclampsia. Arch Med Res 42(5):382–391. doi:10.1016/j.arcmed.2011.08.003

    Article  CAS  PubMed  Google Scholar 

  98. Kolek MJ, Carlquist JF, Muhlestein JB, Whiting BM, Horne BD, Bair TL, Anderson JL (2004) Toll-like receptor 4 gene Asp299Gly polymorphism is associated with reductions in vascular inflammation, angiographic coronary artery disease, and clinical diabetes. Am Heart J 148(6):1034–1040. doi:10.1016/j.ahj.2004.05.049

    Article  CAS  PubMed  Google Scholar 

  99. Li H, Xu H, Liu S (2011) Toll-like receptors 4 induces expression of matrix metalloproteinase-9 in human aortic smooth muscle cells. Mol Biol Rep 38(2):1419–1423. doi:10.1007/s11033-010-0246-4

    Article  CAS  PubMed  Google Scholar 

  100. Ruvolo G, Pisano C, Candore G, Lio D, Palmeri C, Maresi E, Balistreri CR (2014) Can the TLR-4-mediated signaling pathway be “a key inflammatory promoter for sporadic TAA”? Mediat Inflamm 2014:349476. doi:10.1155/2014/349476

    Article  CAS  Google Scholar 

  101. Balistreri CR (2015) Genetic contribution in sporadic thoracic aortic aneurysm? Emerging evidence of genetic variants related to TLR-4-mediated signaling pathway as risk determinants. Vasc Pharmacol 74:1–10. doi:10.1016/j.vph.2015.09.006

    Article  CAS  Google Scholar 

  102. Chaturvedi P, Kamat PK, Kalani A, Familtseva A, Tyagi SC (2015) High methionine diet poses cardiac threat: a molecular insight. J Cell Physiol. doi:10.1002/jcp.25247

    Google Scholar 

  103. den Dekker WK, Tempel D, Bot I, Biessen EA, Joosten LA, Netea MG, van der Meer JW, Cheng C, Duckers HJ (2012) Mast cells induce vascular smooth muscle cell apoptosis via a toll-like receptor 4 activation pathway. Arterioscler Thromb Vasc Biol 32(8):1960–1969. doi:10.1161/ATVBAHA.112.250605

    Article  CAS  Google Scholar 

  104. Feingold KR, Shigenaga JK, Kazemi MR, McDonald CM, Patzek SM, Cross AS, Moser A, Grunfeld C (2012) Mechanisms of triglyceride accumulation in activated macrophages. J Leukoc Biol 92(4):829–839. doi:10.1189/jlb.1111537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Howell KW, Meng X, Fullerton DA, ** C, Reece TB, Cleveland JC Jr (2011) Toll-like receptor 4 mediates oxidized LDL-induced macrophage differentiation to foam cells. J Surg Res 171(1):e27–e31. doi:10.1016/j.jss.2011.06.033

    Article  CAS  PubMed  Google Scholar 

  106. Seimon TA, Obstfeld A, Moore KJ, Golenbock DT, Tabas I (2006) Combinatorial pattern recognition receptor signaling alters the balance of life and death in macrophages. Proc Natl Acad Sci USA 103(52):19794–19799. doi:10.1073/pnas.0609671104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Pi Y, Zhang LL, Li BH, Guo L, Cao XJ, Gao CY, Li JC (2013) Inhibition of reactive oxygen species generation attenuates TLR4-mediated proinflammatory and proliferative phenotype of vascular smooth muscle cells. Lab Investig 93(8):880–887. doi:10.1038/labinvest.2013.79

    Article  CAS  PubMed  Google Scholar 

  108. Ren M, Li R, Luo M, Chen N, Deng X, Yan K, Zeng M, Wu J (2014) Endothelial cells but not platelets are the major source of toll-like receptor 4 in the arterial thrombosis and tissue factor expression in mice. Am J Physiol Regul Integr Comp Physiol 307(7):R901–R907. doi:10.1152/ajpregu.00324.2014

    Article  CAS  PubMed  Google Scholar 

  109. Maloney E, Sweet IR, Hockenbery DM, Pham M, Rizzo NO, Tateya S, Handa P, Schwartz MW, Kim F (2009) Activation of NF-kappaB by palmitate in endothelial cells: a key role for NADPH oxidase-derived superoxide in response to TLR4 activation. Arterioscler Thromb Vasc Biol 29(9):1370–1375. doi:10.1161/ATVBAHA.109.188813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Yumoto H, Chou HH, Takahashi Y, Davey M, Gibson FC 3rd, Genco CA (2005) Sensitization of human aortic endothelial cells to lipopolysaccharide via regulation of Toll-like receptor 4 by bacterial fimbria-dependent invasion. Infect Immun 73(12):8050–8059. doi:10.1128/IAI.73.12.8050-8059.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kahlenberg JM, Dubyak GR (2004) Differing caspase-1 activation states in monocyte versus macrophage models of IL-1beta processing and release. J Leukoc Biol 76(3):676–684. doi:10.1189/jlb.0404221

    Article  CAS  PubMed  Google Scholar 

  112. Dewberry R, Holden H, Crossman D, Francis S (2000) Interleukin-1 receptor antagonist expression in human endothelial cells and atherosclerosis. Arterioscler Thromb Vasc Biol 20(11):2394–2400

    Article  CAS  PubMed  Google Scholar 

  113. Krishnan SM, Sobey CG, Latz E, Mansell A, Drummond GR (2014) IL-1beta and IL-18: inflammatory markers or mediators of hypertension? Br J Pharmacol 171(24):5589–5602. doi:10.1111/bph.12876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Mills KH, Dungan LS, Jones SA, Harris J (2013) The role of inflammasome-derived IL-1 in driving IL-17 responses. J Leukoc Biol 93(4):489–497. doi:10.1189/jlb.1012543

    Article  CAS  PubMed  Google Scholar 

  115. Cahill CM, Rogers JT (2008) Interleukin (IL) 1beta induction of IL-6 is mediated by a novel phosphatidylinositol 3-kinase-dependent AKT/IkappaB kinase alpha pathway targeting activator protein-1. J Biol Chem 283(38):25900–25912. doi:10.1074/jbc.M707692200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Loughrey JP, Laffey JG, Moore BJ, Lynch F, Boylan JF, McLoughlin P (2003) Interleukin-1 beta rapidly inhibits aortic endothelium-dependent relaxation by a DNA transcription-dependent mechanism. Crit Care Med 31(3):910–915. doi:10.1097/01.CCM.0000053516.15727.E5

    Article  CAS  PubMed  Google Scholar 

  117. Jimenez-Altayo F, Briones AM, Giraldo J, Planas AM, Salaices M, Vila E (2006) Increased superoxide anion production by interleukin-1beta impairs nitric oxide-mediated relaxation in resistance arteries. J Pharmacol Exp Ther 316(1):42–52. doi:10.1124/jpet.105.088435

    Article  CAS  PubMed  Google Scholar 

  118. Dalekos GN, Elisaf M, Bairaktari E, Tsolas O, Siamopoulos KC (1997) Increased serum levels of interleukin-1beta in the systemic circulation of patients with essential hypertension: additional risk factor for atherogenesis in hypertensive patients? J Lab Clin Med 129(3):300–308

    Article  CAS  PubMed  Google Scholar 

  119. Li QZ, Deng Q, Li JQ, Yi GH, Zhao SP (2005) Valsartan reduces interleukin-1beta secretion by peripheral blood mononuclear cells in patients with essential hypertension. Clin Chimica Acta; Int J Clin Chem 355(1–2):131–136. doi:10.1016/j.cccn.2004.12.006

    Article  CAS  Google Scholar 

  120. Dorrance AM (2007) Interleukin 1-beta (IL-1beta) enhances contractile responses in endothelium-denuded aorta from hypertensive, but not normotensive, rats. Vasc Pharmacol 47(2–3):160–165. doi:10.1016/j.vph.2007.05.007

    Article  CAS  Google Scholar 

  121. Vazquez-Oliva G, Fernandez-Real JM, Zamora A, Vilaseca M, Badimon L (2005) Lowering of blood pressure leads to decreased circulating interleukin-6 in hypertensive subjects. J Hum Hypertens 19(6):457–462. doi:10.1038/sj.jhh.1001845

    Article  CAS  PubMed  Google Scholar 

  122. Luther JM, Gainer JV, Murphey LJ, Yu C, Vaughan DE, Morrow JD, Brown NJ (2006) Angiotensin II induces interleukin-6 in humans through a mineralocorticoid receptor-dependent mechanism. Hypertension 48(6):1050–1057. doi:10.1161/01.HYP.0000248135.97380.76

    Article  CAS  PubMed  Google Scholar 

  123. Lee DL, Sturgis LC, Labazi H, Osborne JB Jr, Fleming C, Pollock JS, Manhiani M, Imig JD, Brands MW (2006) Angiotensin II hypertension is attenuated in interleukin-6 knockout mice. Am J Physiol Heart Circ Physiol 290(3):H935–H940. doi:10.1152/ajpheart.00708.2005

    Article  CAS  PubMed  Google Scholar 

  124. Kleinbongard P, Heusch G, Schulz R (2010) TNFalpha in atherosclerosis, myocardial ischemia/reperfusion and heart failure. Pharmacol Ther 127(3):295–314. doi:10.1016/j.pharmthera.2010.05.002

    Article  CAS  PubMed  Google Scholar 

  125. Landry DB, Couper LL, Bryant SR, Lindner V (1997) Activation of the NF-kappa B and I kappa B system in smooth muscle cells after rat arterial injury. Induction of vascular cell adhesion molecule-1 and monocyte chemoattractant protein-1. Am J Pathol 151(4):1085–1095

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Neumann P, Gertzberg N, Johnson A (2004) TNF-alpha induces a decrease in eNOS promoter activity. Am J Physiol Lung Cell Mol Physiol 286(2):L452–L459. doi:10.1152/ajplung.00378.2002

    Article  CAS  PubMed  Google Scholar 

  127. Alonso J, Sanchez de Miguel L, Monton M, Casado S, Lopez-Farre A (1997) Endothelial cytosolic proteins bind to the 3′ untranslated region of endothelial nitric oxide synthase mRNA: regulation by tumor necrosis factor alpha. Mol Cell Biol 17(10):5719–5726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A, Dikalov S, Goronzy J, Weyand C, Harrison DG (2007) Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med 204(10):2449–2460. doi:10.1084/jem.20070657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Sriramula S, Haque M, Majid DS, Francis J (2008) Involvement of tumor necrosis factor-alpha in angiotensin II-mediated effects on salt appetite, hypertension, and cardiac hypertrophy. Hypertension 51(5):1345–1351. doi:10.1161/HYPERTENSIONAHA.107.102152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Vinh A, Chen W, Blinder Y, Weiss D, Taylor WR, Goronzy JJ, Weyand CM, Harrison DG, Guzik TJ (2010) Inhibition and genetic ablation of the B7/CD28 T-cell costimulation axis prevents experimental hypertension. Circulation 122(24):2529–2537. doi:10.1161/CIRCULATIONAHA.109.930446

    Article  PubMed  PubMed Central  Google Scholar 

  131. Gutcher I, Becher B (2007) APC-derived cytokines and T cell polarization in autoimmune inflammation. J Clin Investig 117(5):1119–1127. doi:10.1172/JCI31720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Boyman O, Purton JF, Surh CD, Sprent J (2007) Cytokines and T-cell homeostasis. Curr Opin Immunol 19(3):320–326. doi:10.1016/j.coi.2007.04.015

    Article  CAS  PubMed  Google Scholar 

  133. Zanin RF, Bergamin LS, Morrone FB, Coutinho-Silva R, de Souza Wyse AT, Battastini AM (2015) Pathological concentrations of homocysteine increases IL-1beta production in macrophages in a P2X7, NF-kB, and erk-dependent manner. Purinergic Signal 11(4):463–470. doi:10.1007/s11302-015-9464-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Han S, Wu H, Li W, Gao P (2015) Protective effects of genistein in homocysteine-induced endothelial cell inflammatory injury. Mol Cell Biochem 403(1–2):43–49. doi:10.1007/s11010-015-2335-0

    Article  CAS  PubMed  Google Scholar 

  135. Li JJ, Li Q, Du HP, Wang YL, You SJ, Wang F, Xu XS, Cheng J, Cao YJ, Liu CF, Hu LF (2015) Homocysteine triggers inflammatory responses in macrophages through Inhibiting CSE-H2S Signaling via DNA Hypermethylation of CSE Promoter. Int J Mol Sci 16(6):12560–12577. doi:10.3390/ijms160612560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Wang G, Siow YL, Karmin O (2001) Homocysteine induces monocyte chemoattractant protein-1 expression by activating NF-kappaB in THP-1 macrophages. Am J Physiol Heart Circ Physiol 280(6):H2840–H2847

    CAS  PubMed  Google Scholar 

  137. Lee SJ, Lee YS, Seo KW, Bae JU, Kim GH, Park SY, Kim CD (2012) Homocysteine enhances MMP-9 production in murine macrophages via ERK and Akt signaling pathways. Toxicol Appl Pharmacol 260(1):89–94. doi:10.1016/j.taap.2012.01.026

    Article  CAS  PubMed  Google Scholar 

  138. Gao S, Wang L, Liu W, Wu Y, Yuan Z (2014) The synergistic effect of homocysteine and lipopolysaccharide on the differentiation and conversion of raw264.7 macrophages. J Inflamm 11:13. doi:10.1186/1476-9255-11-13

    Article  CAS  Google Scholar 

  139. Feng J, Zhang Z, Kong W, Liu B, Xu Q, Wang X (2009) Regulatory T cells ameliorate hyperhomocysteinaemia-accelerated atherosclerosis in apoE-/- mice. Cardiovasc Res 84(1):155–163. doi:10.1093/cvr/cvp182

    Article  CAS  PubMed  Google Scholar 

  140. Zhang Q, Zeng X, Guo J, Wang X (2002) Oxidant stress mechanism of homocysteine potentiating Con A-induced proliferation in murine splenic T lymphocytes. Cardiovasc Res 53(4):1035–1042

    Article  CAS  PubMed  Google Scholar 

  141. Zhang Q, Zeng X, Guo J, Wang X (2001) Effects of homocysteine on murine splenic B lymphocyte proliferation and its signal transduction mechanism. Cardiovasc Res 52(2):328–336

    Article  CAS  PubMed  Google Scholar 

  142. Davidson SM, Duchen MR (2007) Endothelial mitochondria: contributing to vascular function and disease. Circ Res 100(8):1128–1141. doi:10.1161/01.RES.0000261970.18328.1d

    Article  CAS  PubMed  Google Scholar 

  143. Chen H, Chan DC (2005) Emerging functions of mammalian mitochondrial fusion and fission. Hum Mol Genet 14(2):R283–R289. doi:10.1093/hmg/ddi270

    Article  CAS  PubMed  Google Scholar 

  144. Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC (2003) Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J cell Biol 160(2):189–200. doi:10.1083/jcb.200211046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Papanicolaou KN, Phillippo MM, Walsh K (2012) Mitofusins and the mitochondrial permeability transition: the potential downside of mitochondrial fusion. Am J Physiol Heart Circ Physiol 303(3):H243–H255. doi:10.1152/ajpheart.00185.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Zhao T, Huang X, Han L, Wang X, Cheng H, Zhao Y, Chen Q, Chen J, Cheng H, **ao R, Zheng M (2012) Central role of mitofusin 2 in autophagosome-lysosome fusion in cardiomyocytes. J Biol Chem 287(28):23615–23625. doi:10.1074/jbc.M112.379164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Chen Y, Dorn GW 2nd (2013) PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science 340(6131):471–475. doi:10.1126/science.1231031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Olichon A, Baricault L, Gas N, Guillou E, Valette A, Belenguer P, Lenaers G (2003) Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J Biol Chem 278(10):7743–7746. doi:10.1074/jbc.C200677200

    Article  CAS  PubMed  Google Scholar 

  149. Friedman JR, Lackner LL, West M, DiBenedetto JR, Nunnari J, Voeltz GK (2011) ER tubules mark sites of mitochondrial division. Science 334(6054):358–362. doi:10.1126/science.1207385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Yoon Y, Krueger EW, Oswald BJ, McNiven MA (2003) The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Mol Cell Biol 23(15):5409–5420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Otera H, Wang C, Cleland MM, Setoguchi K, Yokota S, Youle RJ, Mihara K (2010) Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J Cell Biol 191(6):1141–1158. doi:10.1083/jcb.201007152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ikeda Y, Shirakabe A, Brady C, Zablocki D, Ohishi M, Sadoshima J (2015) Molecular mechanisms mediating mitochondrial dynamics and mitophagy and their functional roles in the cardiovascular system. J Mol Cell Cardiol 78:116–122. doi:10.1016/j.yjmcc.2014.09.019

    Article  CAS  PubMed  Google Scholar 

  153. Ryan J, Dasgupta A, Huston J, Chen KH, Archer SL (2015) Mitochondrial dynamics in pulmonary arterial hypertension. J Mol Med 93(3):229–242. doi:10.1007/s00109-015-1263-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Chen L, Gong Q, Stice JP, Knowlton AA (2009) Mitochondrial OPA1, apoptosis, and heart failure. Cardiovasc Res 84(1):91–99. doi:10.1093/cvr/cvp181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Parra V, Eisner V, Chiong M, Criollo A, Moraga F, Garcia A, Hartel S, Jaimovich E, Zorzano A, Hidalgo C, Lavandero S (2008) Changes in mitochondrial dynamics during ceramide-induced cardiomyocyte early apoptosis. Cardiovasc Res 77(2):387–397. doi:10.1093/cvr/cvm029

    Article  CAS  PubMed  Google Scholar 

  156. Ong SB, Subrayan S, Lim SY, Yellon DM, Davidson SM, Hausenloy DJ (2010) Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation 121(18):2012–2022. doi:10.1161/CIRCULATIONAHA.109.906610

    Article  CAS  PubMed  Google Scholar 

  157. Givvimani S, Pushpakumar S, Veeranki S, Tyagi SC (2014) Dysregulation of Mfn2 and Drp-1 proteins in heart failure. Can J Physiol Pharmacol 92(7):583–591. doi:10.1139/cjpp-2014-0060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Givvimani S, Pushpakumar SB, Metreveli N, Veeranki S, Kundu S, Tyagi SC (2015) Role of mitochondrial fission and fusion in cardiomyocyte contractility. Int J Cardiol 187:325–333. doi:10.1016/j.ijcard.2015.03.352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Javadov S, Rajapurohitam V, Kilic A, Hunter JC, Zeidan A, Said Faruq N, Escobales N, Karmazyn M (2011) Expression of mitochondrial fusion-fission proteins during post-infarction remodeling: the effect of NHE-1 inhibition. Basic Res Cardiol 106(1):99–109. doi:10.1007/s00395-010-0122-3

    Article  CAS  PubMed  Google Scholar 

  160. Shenouda SM, Widlansky ME, Chen K, Xu G, Holbrook M, Tabit CE, Hamburg NM, Frame AA, Caiano TL, Kluge MA, Duess MA, Levit A, Kim B, Hartman ML, Joseph L, Shirihai OS, Vita JA (2011) Altered mitochondrial dynamics contributes to endothelial dysfunction in diabetes mellitus. Circulation 124(4):444–453. doi:10.1161/CIRCULATIONAHA.110.014506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Marsboom G, Toth PT, Ryan JJ, Hong Z, Wu X, Fang YH, Thenappan T, Piao L, Zhang HJ, Pogoriler J, Chen Y, Morrow E, Weir EK, Rehman J, Archer SL (2012) Dynamin-related protein 1-mediated mitochondrial mitotic fission permits hyperproliferation of vascular smooth muscle cells and offers a novel therapeutic target in pulmonary hypertension. Circ Res 110(11):1484–1497. doi:10.1161/CIRCRESAHA.111.263848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Glantz LA, Gilmore JH, Lieberman JA, Jarskog LF (2006) Apoptotic mechanisms and the synaptic pathology of schizophrenia. Schizophr Res 81(1):47–63. doi:10.1016/j.schres.2005.08.014

    Article  PubMed  Google Scholar 

  163. Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ, Roth KA, MacGregor GR, Thompson CB, Korsmeyer SJ (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292(5517):727–730. doi:10.1126/science.1059108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Chan DC (2006) Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol 22:79–99. doi:10.1146/annurev.cellbio.22.010305.104638

    Article  CAS  PubMed  Google Scholar 

  165. Karbowski M, Youle RJ (2003) Dynamics of mitochondrial morphology in healthy cells and during apoptosis. Cell Death Differ 10(8):870–880. doi:10.1038/sj.cdd.4401260

    Article  CAS  PubMed  Google Scholar 

  166. Littlewood TD, Bennett MR (2003) Apoptotic cell death in atherosclerosis. Curr Opin Lipidol 14(5):469–475. doi:10.1097/01.mol.0000092618.86399.71

    Article  CAS  PubMed  Google Scholar 

  167. Chang JC, Kou SJ, Lin WT, Liu CS (2010) Regulatory role of mitochondria in oxidative stress and atherosclerosis. World J Cardiol 2(6):150–159. doi:10.4330/wjc.v2.i6.150

    Article  PubMed  PubMed Central  Google Scholar 

  168. Takabe W, Li R, Ai L, Yu F, Berliner JA, Hsiai TK (2010) Oxidized low-density lipoprotein-activated c-Jun NH2-terminal kinase regulates manganese superoxide dismutase ubiquitination: implication for mitochondrial redox status and apoptosis. Arterioscler Thromb Vasc Biol 30(3):436–441. doi:10.1161/ATVBAHA.109.202135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Guan Q, Zhang Y, Yu C, Liu Y, Gao L, Zhao J (2012) Hydrogen sulfide protects against high-glucose-induced apoptosis in endothelial cells. J Cardiovasc Pharmacol 59(2):188–193. doi:10.1097/FJC.0b013e31823b4915

    Article  CAS  PubMed  Google Scholar 

  170. Li Y, Wu H, Khardori R, Song YH, Lu YW, Geng YJ (2009) Insulin-like growth factor-1 receptor activation prevents high glucose-induced mitochondrial dysfunction, cytochrome-c release and apoptosis. Biochem Biophys Res Commun 384(2):259–264. doi:10.1016/j.bbrc.2009.04.113

    Article  CAS  PubMed  Google Scholar 

  171. Givvimani S, Kundu S, Pushpakumar S, Doyle V, Narayanan N, Winchester LJ, Veeranki S, Metreveli N, Tyagi SC (2015) Hyperhomocysteinemia: a missing link to dysfunctional HDL via paraoxanase-1. Can J Physiol Pharmacol 93(9):755–763. doi:10.1139/cjpp-2014-0491

    Article  CAS  PubMed  Google Scholar 

  172. Kumar A, John L, Maity S, Manchanda M, Sharma A, Saini N, Chakraborty K, Sengupta S (2011) Converging evidence of mitochondrial dysfunction in a yeast model of homocysteine metabolism imbalance. J Biol Chem 286(24):21779–21795. doi:10.1074/jbc.M111.228072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Pushpakumar S, Kundu S, Narayanan N, Sen U (2015) DNA hypermethylation in hyperhomocysteinemia contributes to abnormal extracellular matrix metabolism in the kidney. FASEB J 29(11):4713–4725. doi:10.1096/fj.15-272443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Kalani A, Kamat PK, Voor MJ, Tyagi SC, Tyagi N (2014) Mitochondrial epigenetics in bone remodeling during hyperhomocysteinemia. Mol Cell Biochem 395(1–2):89–98. doi:10.1007/s11010-014-2114-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Lee SJ, Kim KM, Namkoong S, Kim CK, Kang YC, Lee H, Ha KS, Han JA, Chung HT, Kwon YG, Kim YM (2005) Nitric oxide inhibition of homocysteine-induced human endothelial cell apoptosis by down-regulation of p53-dependent Noxa expression through the formation of S-nitrosohomocysteine. J Biol Chem 280(7):5781–5788. doi:10.1074/jbc.M411224200

    Article  CAS  PubMed  Google Scholar 

  176. Sipkens JA, Krijnen PA, Meischl C, Cillessen SA, Smulders YM, Smith DE, Giroth CP, Spreeuwenberg MD, Musters RJ, Muller A, Jakobs C, Roos D, Stehouwer CD, Rauwerda JA, van Hinsbergh VW, Niessen HW (2007) Homocysteine affects cardiomyocyte viability: concentration-dependent effects on reversible flip-flop, apoptosis and necrosis. Apoptosis 12(8):1407–1418. doi:10.1007/s10495-007-0077-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Buemi M, Marino D, Di Pasquale G, Floccari F, Ruello A, Aloisi C, Corica F, Senatore M, Romeo A, Frisina N (2001) Effects of homocysteine on proliferation, necrosis, and apoptosis of vascular smooth muscle cells in culture and influence of folic acid. Thromb Res 104(3):207–213

    Article  CAS  PubMed  Google Scholar 

  178. Tyagi N, Ovechkin AV, Lominadze D, Moshal KS, Tyagi SC (2006) Mitochondrial mechanism of microvascular endothelial cells apoptosis in hyperhomocysteinemia. J Cell Biochem 98(5):1150–1162. doi:10.1002/jcb.20837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Kim DJ, Koh JM, Lee O, Kim NJ, Lee YS, Kim YS, Park JY, Lee KU, Kim GS (2006) Homocysteine enhances apoptosis in human bone marrow stromal cells. Bone 39(3):582–590. doi:10.1016/j.bone.2006.03.004

    Article  CAS  PubMed  Google Scholar 

  180. Sipkens JA, Hahn N, van den Brand CS, Meischl C, Cillessen SA, Smith DE, Juffermans LJ, Musters RJ, Roos D, Jakobs C, Blom HJ, Smulders YM, Krijnen PA, Stehouwer CD, Rauwerda JA, van Hinsbergh VW, Niessen HW (2013) Homocysteine-induced apoptosis in endothelial cells coincides with nuclear NOX2 and peri-nuclear NOX4 activity. Cell Biochem Biophys 67(2):341–352. doi:10.1007/s12013-011-9297-y

    Article  CAS  PubMed  Google Scholar 

  181. Moreira ES, Brasch NE, Yun J (2011) Vitamin B12 protects against superoxide-induced cell injury in human aortic endothelial cells. Free Radic Biol Med 51(4):876–883. doi:10.1016/j.freeradbiomed.2011.05.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Pan W, Lin L, Zhang N, Yuan F, Hua X, Wang Y, Mo L (2015) Neuroprotective effects of dexmedetomidine against hypoxia-induced nervous system injury are related to inhibition of NF-kappaB/COX-2 pathways. Cell Mol Neurobiol. doi:10.1007/s10571-015-0315-2

    Google Scholar 

  183. Wang C, Wang Z, Zhang X, Zhang X, Dong L, **ng Y, Li Y, Liu Z, Chen L, Qiao H, Wang L, Zhu C (2012) Protection by silibinin against experimental ischemic stroke: up-regulated pAkt, pmTOR, HIF-1alpha and Bcl-2, down-regulated Bax NF-kappaB expression. Neurosci Lett 529(1):45–50. doi:10.1016/j.neulet.2012.08.078

    Article  CAS  PubMed  Google Scholar 

  184. Liang J, Luan Y, Lu B, Zhang H, Luo YN, Ge P (2014) Protection of ischemic postconditioning against neuronal apoptosis induced by transient focal ischemia is associated with attenuation of NF-kappaB/p65 activation. PLoS ONE 9(5):e96734. doi:10.1371/journal.pone.0096734

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Aoki M, Nata T, Morishita R, Matsushita H, Nakagami H, Yamamoto K, Yamazaki K, Nakabayashi M, Ogihara T, Kaneda Y (2001) Endothelial apoptosis induced by oxidative stress through activation of NF-kappaB: antiapoptotic effect of antioxidant agents on endothelial cells. Hypertension 38(1):48–55

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was in part supported by NIH Grant: HL-74185.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nevena Jeremic.

Ethics declarations

Conflicts of interest

The authors claim that there are no conflicts of interest.

Additional information

Anastasia Familtseva and Nevena Jeremic have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Familtseva, A., Jeremic, N., Kunkel, G.H. et al. Toll-like receptor 4 mediates vascular remodeling in hyperhomocysteinemia. Mol Cell Biochem 433, 177–194 (2017). https://doi.org/10.1007/s11010-017-3026-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-3026-9

Keywords

Navigation