Log in

Lysosomal membrane permeabilization is involved in curcumin-induced apoptosis of A549 lung carcinoma cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

We previously reported that curcumin inhibited lung cancer A549 cells growth and promoted cell apoptosis in vitro. In this study, we further examined the apoptosis-related parameters, including lysosomal damage and cathepsin activation, in A549 cells exposed to curcumin. We found that curcumin caused lysosomal membrane permeabilization (LMP) and cytosolic relocation of cathepsin B (cath B) and cathepsin D (cath D). However, only Z-FA-fmk (a cath B inhibitor) but not pepstatin A (a cath D inhibitor) inhibited curcumin-induced cell apoptosis, mitochondrial membrane potential loss, and cytochrome c release. The antioxidant N-acetylcysteine and glutathione attenuated LMP, suggesting that lysosomal destabilization was dependent on the elevation of reactive oxygen species and which precedes mitochondrial dysfunction. These findings indicated a novel pathway for curcumin regulation of ROS-lysosomal–mitochondrial pathway and provided the key mechanism of regulation of LMP in cell apoptosis, which may be exploited for cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

JC-1,5,5′,6,6′-tetrachloro-1,1′,3,3′:

Tetraethylbenzi-midazolylcarbocyanineiodide

ROS:

Reactive oxygen species

MMP:

Mitochondrial membrane potential

GSH:

Glutathione

NAC:

N-acetylcysteine

LMP:

Lysosomal membrane permeabilization

References

  1. Bredesen DE, Rao RV, Mehlen P (2006) Cell death in the nervous system. Nature 443:796–802. doi:10.1038/nature05293

    Article  PubMed  CAS  Google Scholar 

  2. Chen QY, Lu GH, Wu YQ, Zheng Y, Xu K, Wu LJ, Jiang ZY, Feng R, Zhou JY (2010) Curcumin induces mitochondria pathway mediated cell apoptosis in A549 lung adenocarcinoma cells. Oncol Rep 23:1285–1292. doi:10.3892/or_00000762

    PubMed  CAS  Google Scholar 

  3. Zerovnik E, Pompe-Novak M, Skarabot M, Ravnikar M, Musevic I, Turk V (2002) Human stefin B readily forms amyloid fibrils in vitro. Biochim Biophys Acta 1594:1–1595. doi:10.1016/S0167-4838(01)00295-3

    Article  PubMed  CAS  Google Scholar 

  4. Chwieralski CE, Welte T, Buhling F (2006) Cathepsin-regulated apoptosis. Apoptosis 11:143–149. doi:10.1007/s10495-006-3486-y

    Article  PubMed  CAS  Google Scholar 

  5. Li W, Yuan X, Nordgren G, Dalen H, Dubowchik GM, Firestone RA, Brunk UT (2000) Induction of cell death by the lysosomotropic detergent MSDH. FEBS Lett 470:35–39

    Article  PubMed  CAS  Google Scholar 

  6. Boya P, Andreau K, Poncet D, Zamzami N, Perfettini JL, Metivier D, Ojcius DM, Jaattela M, Kroemer G (2003) Lysosomal membrane permeabilization induces cell death in a mitochondrion-dependent fashion. J Exp Med 197:1323–1334. doi:10.1084/jem.20021952

    Article  PubMed  CAS  Google Scholar 

  7. Boya P, Gonzalez-Polo RA, Poncet D, Andreau K, Vieira HL, Roumier T, Perfettini JL, Kroemer G (2003) Mitochondrial membrane permeabilization is a critical step of lysosome-initiated apoptosis induced by hydroxychloroquine. Oncogene 22:3927–3936. doi:10.1038/sj.onc.1206622

    Article  PubMed  CAS  Google Scholar 

  8. Roberg K, Ollinger K (1998) A pre-embedding technique for immunocytochemical visualization of cathepsin D in cultured cells subjected to oxidative stress. J Histochem Cytochem 46:411–418. doi:10.1177/002215549804600316

    Article  PubMed  CAS  Google Scholar 

  9. Persson HL, Yu Z, Tirosh O, Eaton JW, Brunk UT (2003) Prevention of oxidant-induced cell death by lysosomotropic iron chelators. Free Radic Biol Med 34:1295–1305

    Article  PubMed  CAS  Google Scholar 

  10. Cirman T, Oresic K, Mazovec GD, Turk V, Reed JC, Myers RM, Salvesen GS, Turk B (2004) Selective disruption of lysosomes in HeLa cells triggers apoptosis mediated by cleavage of Bid by multiple papain-like lysosomal cathepsins. J Biol Chem 279:3578–3587. doi:10.1074/jbc.M308347200

    Article  PubMed  CAS  Google Scholar 

  11. Guicciardi ME, Leist M, Gores GJ (2004) Lysosomes in cell death. Oncogene 23:2881–2890. doi:10.1038/sj.onc.1207512

    Article  PubMed  CAS  Google Scholar 

  12. Foghsgaard L, Wissing D, Mauch D, Lademann U, Bastholm L, Boes M, Elling F, Leist M, Jaattela M (2001) Cathepsin B acts as a dominant execution protease in tumor cell apoptosis induced by tumor necrosis factor. J Cell Biol 153:999–1010. doi:10.1083/jcb.153.5.999

    Article  PubMed  CAS  Google Scholar 

  13. Ostenfeld MS, Fehrenbacher N, Hoyer-Hansen M, Thomsen C, Farkas T, Jaattela M (2005) Effective tumor cell death by sigma-2 receptor ligand siramesine involves lysosomal leakage and oxidative stress. Cancer Res 65:8975–8983. doi:10.1158/0008-5472.CAN-05-0269

    Article  PubMed  CAS  Google Scholar 

  14. Mijatovic T, Mathieu V, Gaussin JF, De Neve N, Ribaucour F, Van Quaquebeke E, Dumont P, Darro F, Kiss R (2006) Cardenolide-induced lysosomal membrane permeabilization demonstrates therapeutic benefits in experimental human non-small cell lung cancers. Neoplasia 8:402–412. doi:10.1593/neo.05850

    Article  PubMed  CAS  Google Scholar 

  15. López-Lázaro M (2008) Anticancer and carcinogenic properties of curcumin: considerations for its clinical development as a cancer chemopreventive and chemotherapeutic agent. Mol Nutr Food Res 52(Suppl 1):S103–S127. doi:10.1002/mnfr.200700238

    PubMed  Google Scholar 

  16. Skommer J, Wlodkowic D, Pelkonen J (2006) Cellular foundation of curcumin-induced apoptosis in follicular lymphoma cell lines. Exp Hematol 34:374–463. doi:10.1016/j.exphem.2005.12.015

    Article  Google Scholar 

  17. Cao J, Jia L, Zhou HM, Liu Y, Zhong LF (2006) Mitochondrial and nuclear DNA damage induced by curcumin in human hepatoma G2 cells. Toxicol Sci 91:476–483. doi:10.1093/toxsci/kfj153

    Article  PubMed  CAS  Google Scholar 

  18. Chan WH, Wu HJ, Hsuuw YD (2005) Curcumin inhibits ROS formation and apoptosis in methylglyoxal-treated human hepatoma G2 cells. Ann N Y Acad Sci 1042:372–378. doi:10.1196/annals.1338.057

    Article  PubMed  CAS  Google Scholar 

  19. Kim YS, Jhon DY, Lee KY (2004) Involvement of ROS and JNK1 in selenite-induced apoptosis in Chang liver cells. Exp Mol Med 36:157–164

    PubMed  CAS  Google Scholar 

  20. Pan MH, Lin-Shiau SY, Lin JK (2000) Comparative studies on the suppression of nitric oxide synthase by curcumin and its hydrogenated metabolites through down-regulation of IkappaB kinase and NFkappaB activation in macrophages. Biochem Pharmacol 60:1665–1676. doi:10.1016/S0006-2952(00)00489-5

    Article  PubMed  CAS  Google Scholar 

  21. Korutla L, Kumar R (1994) Inhibitory effect of curcumin on epidermal growth factor receptor kinase activity in A431 cells. Biochim Biophys Acta 1224:597–600. doi:10.1016/0167-4889(94)90299-2

    Article  PubMed  Google Scholar 

  22. Singh S, Aggarwal BB (1995) Activation of transcription factor NF-kappa B is suppressed by curcumin (diferuloylmethane) [corrected]. J Biol Chem 270:24995–25000. doi:10.1074/jbc.270.42.24995

    Article  PubMed  CAS  Google Scholar 

  23. Jiang MC, Yang HF, Lin JK, Yen JJ (1996) Differential regulation of p53, c-Myc, Bcl-2 and Bax protein expression during apoptosis induced by widely divergent stimuli in human hepatoblastoma cells. Oncogene 13:609–616

    PubMed  CAS  Google Scholar 

  24. Chen QY, Wang YY, Xu KD, Lu GH, Zhen Y, Wu LJ, Zhan JW, Fang R, Wu YY, Zhou JY (2010) Curcumin induces apoptosis in human lung adenocarcinoma A549 cells through a reactive oxygen species-dependent mitochondrial signaling pathway. Oncol Rep 23:397–403. doi:10.3892/or_00000648

    PubMed  CAS  Google Scholar 

  25. Paris C, Bertoglio J, Breard J (2007) Lysosomal and mitochondrial pathways in miltefosine-induced apoptosis in U937 cells. Apoptosis 12:1257–1267. doi:10.1007/s10495-007-0052-1

    Article  PubMed  CAS  Google Scholar 

  26. Werne NW, Guicciardi ME, Bronk SF, Gores GJ (2002) Tumor necrosis factor-alpha-associated lysosomal permeabilization is cathepsin B dependent. Am J Physiol Gastrointest Liver Physiol 283:G947–G956. doi:10.1152/ajpgi.00151.2002

    Google Scholar 

  27. Mitrofan LM, Castells FB, Pelkonen J, Monkkonen J (2010) Lysosomal-mitochondrial axis in zoledronic acid-induced apoptosis in human follicular lymphoma cells. J Biol Chem 285:1967–1979. doi:10.1074/jbc.M109.038935

    Article  PubMed  CAS  Google Scholar 

  28. Yeung BH, Huang DC, Sinicrope FA (2006) PS-341 (bortezomib) induces lysosomal cathepsin B release and a caspase-2-dependent mitochondrial permeabilization and apoptosis in human pancreatic cancer cells. J Biol Chem 281:11923–11932. doi:10.1074/jbc.M508533200

    Article  PubMed  CAS  Google Scholar 

  29. Caruso JA, Mathieu PA, Reiners JJ Jr (2005) Sphingomyelins suppress the targeted disruption of lysosomes/endosomes by the photosensitizer NPe6 during photodynamic therapy. Biochem J 392:325–334. doi:10.1042/BJ20050313

    Article  PubMed  CAS  Google Scholar 

  30. Vene R, Arena G, Poggi A, D’Arrigo C, Mormino M, Noonan DM, Albini A, Tosetti F (2007) Novel cell death pathways induced by N-(4-hydroxyphenyl)retinamide: therapeutic implications. Mol Cancer Ther 6:286–298. doi:10.1158/1535-7163.MCT-06-0346

    Article  PubMed  CAS  Google Scholar 

  31. Waster PK, Ollinger KM (2009) Redox-dependent translocation of p53 to mitochondria or nucleus in human melanocytes after UVA- and UVB-induced apoptosis. J Invest Dermatol 129:1769–1781. doi:10.1038/jid.2008.421

    Article  PubMed  Google Scholar 

  32. De Milito A, Iessi E, Logozzi M, Lozupone F, Spada M, Marino ML, Federici C, Perdicchio M, Matarrese P, Lugini L, Nilsson A, Fais S (2007) Proton pump inhibitors induce apoptosis of human B-cell tumors through a caspase-independent mechanism involving reactive oxygen species. Cancer Res 67:5408–5417. doi:10.1158/0008-5472.CAN-06-4095

    Article  PubMed  Google Scholar 

  33. Antunes F, Cadenas E, Brunk UT (2001) Apoptosis induced by exposure to a low steady-state concentration of H2O2 is a consequence of lysosomal rupture. Biochem J 356:549–555

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project supported by the Zhejiang Traditional Chinese Medicine Administration Bureau (Project: No. 2008CA077 and No. 2011ZA093) and the Funds of the Nan**g Command Health Speciality “122” Project (Funds: No. 342510001). We would like to thank Drs. Kedi Xu and Yingke Xu for their technical assistance and discussion.

Conflict of interest

All the authors listed have seen the manuscript and approved to submit to your journal. We disclosed no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Guo Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, QY., Shi, JG., Yao, QH. et al. Lysosomal membrane permeabilization is involved in curcumin-induced apoptosis of A549 lung carcinoma cells. Mol Cell Biochem 359, 389–398 (2012). https://doi.org/10.1007/s11010-011-1033-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1033-9

Keywords

Navigation