Log in

Induction Zone Sintering of WC–8Co Hard Alloy

  • Published:
Materials Science Aims and scope

A new method of the WC–8Co hard alloy sintering is proposed, which consists of sintering a pre- pressed, porous billet moving with a given speed through an induction heating zone of a given temperature. The effect of the sintering temperature in the range of 1200–1380°C on the microstructure, local chemical, and phase composition of the carbide is studied. The induction zone sintering in the presence of a liquid phase does not cause the growth of carbide grains. The grain size of tungsten carbide sintered in the temperature range of 1240–1280°C and travel speed of 3 mm/min decreases from 3.9 μm to 1.9 μm, and an increase in the billet displacement rate from 3 to 6 mm/min promotes the formation of the η-phase, presumably due to a large temperature gradient. The refinement of the structure causes a monotonic increase in the HV1 hardness from 417 to 664.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. K.-F. Wang, X.-H. Yang, X.-C. Deng, K.-C. Chou, and G.-H. Zhang, “Enhancement of the mechanical properties of ultrafinegrained WC-Co cemented carbides via the in-situ generation of VC,” J. Alloys Compd., 903, art. no. 163961 (2022). https://doi.org/10.1016/j.jallcom.2022.163961

  2. Y. Yuan, L. Fu, and J. Li, “Annealing effect on the mechanical properties of ultrafine WC–Co materials,” J. of Appl. Res. and Technol., 15, Is. 4, 396–401 (2017). https://doi.org/10.1016/j.jart.2017.03.005

  3. Z. Fang, P. Maheshwari, X. Wang, H. Y. Sohn, A. Griffo, and R. Riley, “Experimental study of the sintering of nanocrystalline WC-Co powders,” Int. J. Refract. Met. Hard Mater., 23, Spec. Iss. 4–6, 249–257 (2005). https://doi.org/10.1016/j.ijrmhm.2005.04.014

  4. D. Li, Y. Liu, J. Ye, X. Chen, and L. Wang, “The enhancement of the microstructure and mechanical performances of ultrafine WCCo cemented carbides by optimizing Cr2(C, N) addition and WC particle sizes,” Int. J. Refract. Met. Hard Mater., 97, art. no. 105518 (2021). https://doi.org/10.1016/j.ijrmhm.2021.105518

  5. X. Chen, Y. Liu, J. Ye, L. Wang, and D. Li, “Effect of rapid cooling on microstructure and properties of nanocrystalline WC-9%co-Cr3C2-VC cemented carbide,” Int. J. Refract. Met. Hard Mater., 109, art. no. 105961 (2022). https://doi.org/10.1016/j.ijrmhm.2022.105961

  6. M. Mahmoodan, H. Aliakbarzadeh, and R. Gholamipour, “Sintering of WC-10%Co nano powders containing TaC and VC grain growth inhibitors,” Transactions of Nonferrous Met. Soc. of China (English Edition), 21, Is. 5, 1080–1084 (2011). https://doi.org/10.1016/S1003-6326(11)60825-X

  7. E. A. Lantsev, N. V. Malekhonova, A. V. Nokhrin, V. N. Chuvil’deev, M. S. Boldin, P. V. Andreev, K. E. Smetanina, Y. V. Blagoveshchenskiy, N. V. Isaeva, and A. A. Murashov, “Spark plasma sintering of fine-grained WC hard alloys with ultra-low cobalt content,” J. Alloys Compd., 857, art. no. 157535 (2021). https://doi.org/10.1016/j.jallcom.2020.157535

  8. I. Solodkyi, S. Teslia, O. Bezdorozhev, I. Trosnikova, O. Yurkova, B. Bogomol, P. Loboda, “Hardmetals prepared from WC–W2C eutectic particles and AlCrFeCoNiV high entropy alloy as a binder,” Vacuum, 195, art. no. 110630 (2022). https://doi.org/10.1016/J.VACUUM.2021.110630

  9. I. Solodkyi, I.Bogomol, and P.Loboda, “High-speed electron beam sintering of WC–8Co under controlled temperature conditions,” Int. J. Refract. Met. Hard Mater., 102, art. no. 105730 (2022). https://doi.org/10.1016/J.IJRMHM.2021.105730

  10. S. Son, J. M. Park, S. H. Park, J. H. Yu, H. Kwon, and H. S. Kim, “Correlation between microstructural heterogeneity and mechanical properties of WC–Co composite additively manufactured by selective laser melting,” Mater. Lett., 293, art. no. 129683 (2021). https://doi.org/10.1016/J.MATLET.2021.129683

  11. C. Chen, B. Huang, Z. Liu, Y. Li, D. Zou, T. Liu, Y. Chang, and L. Chen, “Additive manufacturing of WC–Co cemented carbides: Process, microstructure, and mechanical properties,” Addit Manuf., 63, art. no. 103410 (2023). https://doi.org/10.1016/J.ADDMA.2023.103410

  12. I. Konyashin, and B. Ries, Cemented Carbides. Elsevier (2022). https://doi.org/10.31399/asm.hb.v16.a0002124

  13. S. M. H. Hojjatzadeh, N. D. Parab, W. Yan, Q. Guo, L. **ong, C. Zhao, M. Qu, L. I. Escano, X. **ao, K. Fezzaa, W. Everhart, T. Sun, and L. Chen, “Pore elimination mechanisms during 3D printing of metals,” Nature Communications, 10, Is. 1, art. no. 3088 (2019). https://doi.org/10.1038/s41467-019-10973-9

  14. G. S. Upadhyaya, Cemented Tungsten Carbides – Production, Properties and Testing, Noyes Publications, Westwood (1988).

    Google Scholar 

  15. C. J. R., González Olivera, E. A. Álvareza, and J. L.García, “Kinetics of densification and grain growth in ultrafine WC-Co composites,” Int. J. of Refract. Met. Hard Mater., 59, 121–131 (2016). https://doi.org/10.1016/j.ijrmhm.2016.05.016

  16. H. Tian, M. Zhang, Y. Peng, Y. Du, and P. Zhou, “Sintering behavior and mechanical properties of Cr3C2 doped ultra-fine WC–Co cemented carbides: Experiment guided with thermodynamic calculations,” Int. J. of Refract. Met. Hard Mater., 78, 240–246 (2019). https://doi.org/10.1016/J.IJRMHM.2018.09.014

    Article  CAS  Google Scholar 

  17. P. Fan, J. Guo, Z. Z. Fang, and P. Prichard, “Effects of liquid-phase composition on its migration during liquid-phase sintering of cemented carbide,” Metall. and Mater. Trans.: A, 40, Is. 8, 1995–2006 (2009). https://doi.org/10.1007/s11661-009-9887-0

  18. W. Su, Y. Sun, H. Wang, X. Zhang, and J. Ruan, “Preparation and sintering of WC–Co composite powders for coarse-grained WC-8Co hardmetals,” Int. J. Refract. Met. Hard Mater., 45, 80–85 (2014). https://doi.org/10.1016/J.IJRMHM.2014.04.004

    Article  CAS  Google Scholar 

  19. Y. Sun, W. Su, H. Yang, and J. Ruan, “Effects of WC particle size on sintering behavior and mechanical properties of coarsegrained WC–8Co cemented carbides fabricated by unmilled composite powders,” Ceramics Int., 41, Is. 10, 14482–14491 (2015). https://doi.org/10.1016/j.ceramint.2015.07.086

  20. Y. Zhou, Y. Yang, G. Yang, D. Yin, Y. Qin, and J. Liu, “Effects of sintering temperature on the densification of WC–6Co cemented carbides sintered by coupled multi-physical-fields activated technology,” Manuf. Rev., 2, art. no. 18 (2015). https://doi.org/10.1051/mfreview/2015017

  21. S. Fries, S. Genilke, M. B. Wilms, M. Seimann, A. Weisheit, A. Kaletsch, T. Bergs, J. H. Schleifenbaum, and C. Broeckmann, “Laser-based additive manufacturing of WC–Co with high-temperature powder bed preheating,” Steel Res. Int., 91, Is. 3, art. no. 1900511 (2020). https://doi.org/10.1002/SRIN.201900511

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Solodkyi.

Additional information

Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 59, No. 5, 119–124, September–October, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teslia, S.Y., Kucher, O.S., Bogomol, I.I. et al. Induction Zone Sintering of WC–8Co Hard Alloy. Mater Sci 59, 638–643 (2024). https://doi.org/10.1007/s11003-024-00821-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-024-00821-7

Keywords

Navigation