Log in

Tryptic Stability and Antimicrobial Activity of the Derivatives of Polybia-CP with Fine-Tuning Modification in the Side Chain of Lysine

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Antimicrobial peptides (AMPs) were believed to be a class of promising antimicrobials to combat the increasing resistant microbes. However, AMPs could be easily degraded by endogenous proteases, which limited their clinic use. Considering that lysine is the only one cationic amino acid residue in polybia-CP which were related to the cleavage of trypsin like serine protease’s digestion, we introduced lysine’s mimics which kept the key function group side chain –NH2 and only varied the methylene chains in the sequence of polybia-CP to investigate the effect of the introduction of non-proteinogenic amino acids on the activity and stability of antimicrobial peptides. In addition, two analogs in which lysine were substituted by the other two proteinogenic cationic amino acids arginine and histidine also were synthesized to evaluate the effect of fine tuning the function group in lysine on its antimicrobial activity and stability. We found that the introduction of amino acids with shortened side chain length of lysine could enhance the trypsin resistance of the derivatives of polybia-CP, while maintain the same or comparable antimicrobial activity with the parent peptide. In addition, while lysine was substituted by histidine, His-CP demonstrated comparable antimicrobial activity and dramatically improved trypsin resistance. Although the analog exhibited excellent antimicrobial activity while lysine was substituted by Arginine residue (Arg-CP), its enzymatic stability was almost the same as its parent peptide. These results suggest that the fine-tuning of side chain of lysine may offer a promising strategy to improve the tryptic stability and retain the antimicrobial activity of antimicrobial peptide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bagheri M, Arasteh S, Haney EF, Hancock REW (2016) Tryptic stability of synthetic bactenecin derivatives is determined by the side chain length of cationic residues and the peptide conformation. J Med Chem 59:1206–1209

    Google Scholar 

  • Bahar A, Ren D (2013) Antimicrobial peptides. Pharmaceuticals 6:1543

    PubMed  PubMed Central  Google Scholar 

  • Bessalle R, Kapitkovsky A, Gorea A, Shalit I, Fridkin M (1990) All-D-magainin: chirality, antimicrobial activity and proteolytic resistance. FEBS Lett 274:151–155

    CAS  PubMed  Google Scholar 

  • Boman HG, Dan H (1987) Cell-free immunity in insects. Annu Rev Microbiol 41:103–126

    CAS  PubMed  Google Scholar 

  • Bommarius B, Jenssen H, Elliott M, Kindrachuk J, Pasupuleti M, Gieren H, Jaeger KE, Hancock RE, Kalman D (2010) Cost-effective expression and purification of antimicrobial and host defense peptides in Escherichia coli. Peptides 31:1957–1965

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carmona G, Rodriguez A, Juarez D, Corzo G, Villegas E (2013) Improved protease stability of the antimicrobial peptide Pin2 substituted with d-amino acids. Protein J 32:456–466

    CAS  PubMed  Google Scholar 

  • Choda N, Yano Y, Matsuzaki K (2010) Roles of Lys and Arg in the activity of antimicrobial peptides. Biophys J 98:84a

    Google Scholar 

  • Choi H, Hwang JS, Kim H, Lee DG (2013) Antifungal effect of CopA3 monomer peptide via membrane-active mechanism and stability to proteolysis of enantiomeric D-CopA3. Biochem Biophys Res Commun 440:94–98

    CAS  PubMed  Google Scholar 

  • Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74:417–433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dean SN, Bishop BM, Van HML (2011) Susceptibility of Pseudomonas aeruginosa biofilm to alpha-helical peptides: d-enantiomer of LL-37. Front Microbiol 2:128

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dennison SR, Mura M, Harris F, Morton LHG, Zvelindovsky A, Phoenix DA (2015) The role of C-terminal amidation in the membrane interactions of the anionic antimicrobial peptide, maximin H5. Biochim Biophys Acta 1848:1111–1118

    CAS  PubMed  Google Scholar 

  • Epand RM, Vogel HJ (1999) Diversity of antimicrobial peptides and their mechanisms of action. Biochim Biophys Acta 1462:11–28

    CAS  PubMed  Google Scholar 

  • Fensterseifer ICM, Felício MR, Alves ESF, Cardoso MH, Torres MDT, Matos CO, Silva ON, Lu TK, Freire MV, Neves NC, Gonçalves S, Lião LM, Santos NC, Porto WF, de la Fuente-Nunez C, Franco OL (2019) Selective antibacterial activity of the cationic peptide PaDBS1R6 against Gram-negative bacteria. Biochim Biophys Acta 1861:1375–1387

    CAS  Google Scholar 

  • Fields GB, Noble RL (1990) Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int J Pept Protein Res 35:161–214

    CAS  PubMed  Google Scholar 

  • Fitton JE, Dell A, Shaw WV (1980) The amino acid sequence of the delta haemolysin of Staphylococcus aureus. FEBS Lett 115:209–212

    CAS  PubMed  Google Scholar 

  • Hamamoto K, Kida Y, Zhang Y, Shimizu T, Kuwano K (2002) Antimicrobial activity and stability to proteolysis of small linear cationic peptides with d-amino acid substitutions. Microbiol Immunol 46:741

    CAS  PubMed  Google Scholar 

  • Hancock REW (2001) Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect Dis 1:156–164

    CAS  PubMed  Google Scholar 

  • Huh AJ, Kwon YJ (2011) “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 156:128

    CAS  PubMed  Google Scholar 

  • Jia F, Wang J, Peng J, Zhao P, Kong Z, Wang K, Yan W, Wang R (2017) d-amino acid substitution enhances the stability of antimicrobial peptide polybia-CP. Acta Biochim Biophys Sin 49:916–925

    CAS  PubMed  Google Scholar 

  • ** Y, Hammer J, Pate M, Zhang Y, Zhu F, Zmuda E, Blazyk J (2005) Antimicrobial activities and structures of two linear cationic peptide families with various amphipathic β-sheet and α-helical potentials. Antimicrob Agents Chemother 49:4957

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kurth T, Grahn S, Thormann M, Ullmann D, Hofmann HJ, Jakubke HD, Hedstrom L (1998) Engineering the S1’ subsite of trypsin: design of a protease which cleaves between dibasic residues. Biochemistry 37:11434

    CAS  PubMed  Google Scholar 

  • Ma W, Tang C, Lai L (2005) Specificity of trypsin and chymotrypsin: loop-motion-controlled dynamic correlation as a determinant. Biophys J 89:1183–1193

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morassutti C, Amicis FD, Skerlavaj B, Zanetti M, Marchetti S (2002) Production of a recombinant antimicrobial peptide in transgenic plants using a modified VMA intein expression system. FEBS Lett 519:141–146

    CAS  PubMed  Google Scholar 

  • Nan Y H, Sunghaeng L, Hakjun K, Songyub S (2010) Mammalian cell toxicity and candidacidal mechanism of Arg- or Lys-containing Trp-rich model antimicrobial peptides and their D-enantiomeric peptides. Peptides 31:1826–1831

    CAS  PubMed  Google Scholar 

  • Pag U, Oedenkoven M, Papo N, Oren Z, Shai Y, Sahl HG (2004) In vitro activity and mode of action of diastereomeric antimicrobial peptides against bacterial clinical isolates. J Antimicrob Chemother 53:230–239

    CAS  PubMed  Google Scholar 

  • Park S, Park SH, Ahn HC, Kim S, Kim SS (2001) Structural study of novel antimicrobial peptides, nigrocins, isolated from Rana nigromaculata. FEBS Lett 507:95–100

    CAS  PubMed  Google Scholar 

  • Pasupuleti M, Chalupka A, Mörgelin M, Schmidtchen A, Malmsten M (2009) Tryptophan end-tagging of antimicrobial peptides for increased potency against Pseudomonas aeruginosa. Biochim Biophys Acta 1790:800–808

    CAS  PubMed  Google Scholar 

  • Perera E, Pons T, Hernandez D, Moyano FJ, Martinez-Rodriguez G, Mancera JM (2010) New members of the brachyurins family in lobster include a trypsin-like enzyme with amino acid substitutions in the substrate-binding pocket. FEBS J 277:3489–3501

    CAS  PubMed  Google Scholar 

  • Pfaller M, Boyken L, Hollis R, Kroeger J, Messer S, Tendolkar S, Diekema D (2011) Comparison of the broth microdilution methods of the European Committee on Antimicrobial Susceptibility Testing and the Clinical and Laboratory Standards Institute for testing itraconazole, posaconazole, and voriconazole against Aspergillus isolates. J Clin Microbiol 49:1110–1112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Porter EA, Weisblum B, Gellman SH (2002) Mimicry of host-defense peptides by unnatural oligomers: antimicrobial beta-peptides. J Am Chem Soc 124:7324–7330

    CAS  PubMed  Google Scholar 

  • Rd OL, Soto AM, Knoop FC, Conlon JM (2001) Pseudin-2: an antimicrobial peptide with low hemolytic activity from the skin of the paradoxical frog. Biochem Biophys Res Commun 288:1001

    Google Scholar 

  • Rivas L, Luqueortega JR, Andreu D (2009) Amphibian antimicrobial peptides and Protozoa: lessons from parasites. Biochim Biophys Acta 1788:1570–1581

    CAS  PubMed  Google Scholar 

  • Shai Y (2002) Mode of action of membrane active antimicrobial peptides. Pept Sci 66:236–248

    CAS  Google Scholar 

  • Simmaco M, Kreil G, Barra D (2009) Bombinins, antimicrobial peptides from Bombina species. Biochim Biophys Acta 1788:1551–1555

    CAS  PubMed  Google Scholar 

  • Souza BM, Mendes MA, Santos LD, Marques MR, César LMM, Almeida RNA, Pagnocca FC, Konno K, Palma MS (2005) Structural and functional characterization of two novel peptide toxins isolated from the venom of the social wasp Polybia paulista. Peptides 26:2157–2164

    CAS  PubMed  Google Scholar 

  • Struelens MJ, Denis O, Rodriguez-Villalobos H, Hallin M (2007) The threat of antibiotic resistance: origin, impact and public health perspectives. Rev Med Brux 28:381

    CAS  PubMed  Google Scholar 

  • Svenson J, Stensen W, Brandsdal BO, Haug BE, Monrad J, Svendsen JS (2008) Antimicrobial peptides with stability toward tryptic degradation. Biochemistry 47:3777

    CAS  PubMed  Google Scholar 

  • Szymanowski J, Voelkel A (1992) Hydrophile lipophile balance of hydroxyoximes in McGowan scale and their partition and extraction properties. J Chem Technol Biotechnol 54:19–26

    CAS  Google Scholar 

  • Teixeira V, Feio MJ, Bastos M (2012) Role of lipids in the interaction of antimicrobial peptides with membranes. Prog Lipid Res 51:149–177

    CAS  PubMed  Google Scholar 

  • Wang K, Zhang B, Zhang W, Yan J, Li J, Wang R (2008) Antitumor effects, cell selectivity and structure–activity relationship of a novel antimicrobial peptide polybia-MPI. Peptides 29:963–968

    CAS  PubMed  Google Scholar 

  • Wang K, Yan J, Liu X, Zhang J, Chen R, Zhang B, Dang W, Zhang W, Kai M, Song J, Wang R (2011) Novel cytotoxity exhibition mode of polybia-CP, a novel antimicrobial peptide from the venom of the social wasp Polybia paulista. Toxicology 288:27–33

    CAS  PubMed  Google Scholar 

  • Wang K, Yan J, Chen R, Dang W, Zhang B, Zhang W, Song J, Wang R (2012) Membrane-active action mode of polybia-CP, a novel antimicrobial peptide isolated from the venom of Polybia paulista. Antimicrob Agents Chemother 56:3318–3323

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang K, Jia F, Dang W, Zhao Y, Zhu R, Sun M, Qiu S, An X, Ma Z, Zhu Y, Yan J, Kong Z, Yan W, Wang R (2016) Antifungal effect and action mechanism of antimicrobial peptide polybia-CP. J Pept Sci 22:28–35

    PubMed  Google Scholar 

  • Wright GD (2005) Bacterial resistance to antibiotics: enzymatic degradation and modification. Adv Drug Deliv Rev 57:1451

    CAS  PubMed  Google Scholar 

  • ** L, Anshan S (2015) Characterization of antimicrobial activity and mechanisms of low amphipathic peptides with different α-helical propensity. Acta Biomater 18:155–167

    Google Scholar 

  • Yan J, Wang K, Dang W, Chen R, **e J, Zhang B, Song J, Wang R (2013) Two hits are better than one: membrane-active and DNA binding-related double-action mechanism of NK-18, a novel antimicrobial peptide derived from mammalian NK-lysin. Antimicrob Agents Chemother 57:220–228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55:27–55

    CAS  PubMed  Google Scholar 

  • Yeaman MR, Bayer AS, Koo SP, Foss W, Sullam PM (1998) Platelet microbicidal proteins and neutrophil defensin disrupt the Staphylococcus aureus cytoplasmic membrane by distinct mechanisms of action. J Clin Invest 101:178–187

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu C, Shao Z, Liu B, Zhang Y, Wang S (2016) Inhibition of 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP) formation by alkoxy radical scavenging of flavonoids and their quantitative structure-activity relationship in a model system. J Food Sci 81:C1908-1913

    CAS  PubMed  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389

    CAS  PubMed  Google Scholar 

  • Zhang SK, Song JW, Gong F, Li SB, Chang HY, **e HM, Gao HW, Tan YX, Ji SP (2016) Design of an alpha-helical antimicrobial peptide with improved cell-selective and potent anti-biofilm activity. Sci Rep 6:27394

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants from the National Natural Science Foundation of China (Nos. 82073679, 81872723, 81601351), CAMS Innovation Fund for Medical Sciences (CIFMS, No. 2019-12M-5-074), Natural Science Foundation of Gansu Province, China (No. 20JR5RA245)  and the Fundamental Research Funds for the Central Universities (No. lzujbky-2020- kb13).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen** Yan or Kairong Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research Involving Human and/or Animal Rights

This article does not contain any studies with human participants performed by any of the authors.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, F., Liang, X., Wang, J. et al. Tryptic Stability and Antimicrobial Activity of the Derivatives of Polybia-CP with Fine-Tuning Modification in the Side Chain of Lysine. Int J Pept Res Ther 27, 851–862 (2021). https://doi.org/10.1007/s10989-020-10129-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-020-10129-0

Keywords

Navigation