Log in

Low-temperature synthesis and thermal expansion of nanocrystalline monoclinic zirconolite ceramics

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The nanocrystalline Zirconolite (CaZrTi2O7 or CZT) powder was successfully synthesized at low temperature using wet chemical method. The calcination temperature was estimated by simultaneous thermogravimetry and differential thermal analysis (TG–DTA). The calcination of the precursor at the various temperatures (600–1250 °C) exhibited two major phases of nanocrystalline CZT powder. The XRD pattern has confirmed the formation of the fluorite structure at 600–900 °C. However, the fluorite structure of the CZT was completely transformed to monoclinic (2 M) structure at 1000 °C. Further, SEM, and TEM have investigated the influence of annealing temperatures on the microstructures and particle size. The linear thermal expansion of sintered CZT pellet was measured by dilatometrically in the range of 30–950 °C and the calculated thermal expansion coefficient value was (α) = 9.93 × 10–6 K−1. The theoretical density > 95% was achieved in nanocrystalline CZT powder after being pelletized and sintered at 1250 °C for 5 h. The thermal expansion coefficient and density of the CZT are favorable for potential application in the immobilization of radwaste containing actinide and lanthanides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ringwood AE, Kesson SE, Ware NG, Hibberson W, Major A. Immobilization of high-level nuclear reactor wastes in SYNROC. Nature. 1979;278:219–23.

    Article  CAS  Google Scholar 

  2. Ringwood AE, Oversby VM, Kesson SE, Sinclair W, Ware N, Hibberson W. Immobilization of high-level nuclear reactor wastes in SYNROC: a current appraisal. Nucl Chem Waste Manag. 1981;2(4):287–305.

    Article  CAS  Google Scholar 

  3. Gatehouse BM, Grey IE, Hill RJ, Rossell HJ. Zirconolite, CaZrxTi3-xO7; structure refinements for near-end-member compositions with x = 0.85 and 1.30. Acta Cryst. 1981;B37:306–12.

    Article  CAS  Google Scholar 

  4. Cheary RW, Coelho AA. A site occupancy analysis of zirconolite CaZrxTi3–xO7. Phys Chem Minerals. 1997;24(6):447–54.

    Article  CAS  Google Scholar 

  5. Cheary RW. Zirconolite CaZr0.92Ti2.08O7 from 294 to 1173 K. J Solid State Chem. 1992;98(2):323–9.

    Article  CAS  Google Scholar 

  6. Rossell HJ. Zirconolite-a fluorite-related superstructure. Nature. 1980;283(5744):282–3.

    Article  CAS  Google Scholar 

  7. White TJ, Segall RL, Hutchison JL, Barry JC. Polytypic behavior of zirconolite. Proc R Soc Lond A. 1984;392:343–58.

    Article  CAS  Google Scholar 

  8. Lumpkin GR. Ceramic waste forms for actinides. Elements. 2006;2(6):365–72.

    Article  CAS  Google Scholar 

  9. Wang L, Liang T. Ceramics for high level radioactive waste solidification. J Adv Ceram. 2012;1(3):194–203.

    Article  CAS  Google Scholar 

  10. Whittle KR, Hyatt NC, Smith KL, Margiolaki I, Berry FJ, Knight KS, Lumpkin GR. Combined neutron and X-ray diffraction determination of disorder in doped zirconolite-2M. Am Mineral. 2012;97:291–8.

    Article  CAS  Google Scholar 

  11. Matzke HJ, Ray ILF, Seatonberry BW, Thiele H, Trisoglio C, Walker CT, White TJ. Incorporation of transuranic elements in titanate nuclear waste ceramics. J Am Ceram Soc. 1990;73:370–8.

    Article  CAS  Google Scholar 

  12. Meng C, Ding X, Li W, Zhao J, Yang H. Phase structure evolution and chemical durability studies of Ce-doped zirconolite–pyrochlore synroc for radioactive waste storage. J Mate Sci. 2016;51(11):5207–15.

    Article  CAS  Google Scholar 

  13. Vance ER, Lumpkin GR, Carter ML, Cassidy DJ, Ball CJ, Day RA, Begg BD. Incorporation of uranium in zirconolite (CaZrTi2O7). J Am Ceram Soc. 2004;85(7):1853–9.

    Article  Google Scholar 

  14. Blackburn LR, Bailey DJ, Sun S, Gardner LJ, Stennett MC, Corkhill CL. Hyatt NC Review of zirconolite crystal chemistry and aqueous durability. Advs Appl Ceram. 2021;120(2):69–83.

    Article  CAS  Google Scholar 

  15. Ringwood AE, Kesson SE, Ware NG, Hibberson WO, Major A. The SYNROC process: a geochemical approach to nuclear waste immobilization. Geochem J. 1979;13(4):141–65.

    Article  CAS  Google Scholar 

  16. Gieré R, Malmström J, Reusser E, Lumpkin GR, Düggelin M, Mathys D, Guggenheim R, Günther D. Durability of zirconolite in hydrothermal fluids: implications for nuclear waste disposal. Mater Res Soc Symp Proc. 2000;663:267.

    Article  Google Scholar 

  17. Zhang Y, Stewart MWA, Li H, Carter ML, Vance ER, Moricca S. Zirconolite-rich titanate ceramics for immobilization of actinides—waste form/HIP can interactions and chemical durability. J Nucl Mater. 2009;395:69–74.

    Article  CAS  Google Scholar 

  18. Lumpkin GR, Ewing RC, Chakoumakos BC, Greegor RB, Lytle FW, Foltyn EM, Clinard FW, Boatner LA, Abraham MM. Alpha-recoil damage in zirconolite (CaZrTi2O7). J Mater Res. 1986;1(4):564–76.

    Article  CAS  Google Scholar 

  19. Vance ER, Ball CJ, Smith RA, Day KL, Blackford MG, Begg BD, Angel PJ. Actinide and rare earth incorporation into zirconolite. J Alloys Compds. 1994;213–214:406–9.

    Article  Google Scholar 

  20. Begg BD, Vance ER, Day RA, Hambley M, Conradson SD. Plutonium and neptunium incorporation in zirconolite. Mater Res Soc Symp Proc. 1996;465–325.

  21. Begg BD, Vance ER, Lumpkin GR. Charge compensation and the incorporation of cerium in Zirconolite and Perovskite. MRS Online Proc Library. 1997;506:79–86.

    Article  Google Scholar 

  22. Begg BD, Vance ER, Conradson SD. The incorporation of plutonium and neptunium in Zirconolite and Perovskite. J Alloys Compds. 1998;271–273:221–6.

    Article  Google Scholar 

  23. Omel’yanenko BI, Livshits TS, Yudintsev SV, Nikonov BS. Natural and artificial minerals as matrices for immobilization of actinides. Geology Ore Deposits. 2007;49(3):173–93.

    Article  Google Scholar 

  24. Ventura GD, Bellatreccia F, Williams CT. Zirconolite with significant REEZrNb(Mn, Fe)O7 from a xenolith of the Laacher Eruptive Center, Eifel volcanic Region, Germany. Can Mineral. 2000;38(1):57–65.

    Article  Google Scholar 

  25. Jorion F, Deschanels X, Advocat T, Desmouliere F, Cachia JN, Peuget S, Roudil D, Leturcq G. Zirconolite for minor actinide containment and alpha irradiation resistance. Nucl Sci Eng. 2006;153:262–71.

    Article  CAS  Google Scholar 

  26. Bailey DJ, Lawson SM, Sun SK, Stennett MC, Lee TH, Ravel B, Corkhill CL, Heo J, Hyatt NC. A new approach to the immobilisation of technetium and transuranics: co-disposal in a zirconolite ceramic matrix. J Nucl Mater. 2020;528: 151885.

    Article  CAS  Google Scholar 

  27. Wei ZJ, Bao WC, Sun SK, Blackburn LR, Tan SH, Gardner LJ, Guo WM, Xu F, Hyatt NC, Lin HT. Synthesis of zirconolite-2M ceramics for immobilisation of neptunium. Ceram Int. 2021;47(1):1047–52.

    Article  CAS  Google Scholar 

  28. Fielding PE, White TJ. Crystal chemical incorporation of high-level waste species in aluminotitanate-based ceramics: valence, location, radiation damage, and hydrothermal durability. J Mater Res. 1987;2(3):387–414.

    Article  CAS  Google Scholar 

  29. Yugo M, Kenji S, Akihiko K. Nanocrystalline CaZrTi2O7 Photo catalyst prepared by a polymerizable complex method in the presence of Cs2CO3 flux for water splitting. Chem Lett. 2009;38(2):180–1.

    Article  Google Scholar 

  30. Chen Shifu LW, Mingsong J, Yunguang Y. Preparation, characterization, and activity evaluation of CaZrTi2O7 photo catalyst. Mater Chem Phys. 2012;134(2–3):951–7.

    Article  Google Scholar 

  31. Sandeep K, Thomas JK, Solomon S. Synthesis and characterization of AZrTi2O7 (A = mg, ca, Sr and Ba) functional nanoceramics. J Electroceram. 2019;43:1–9.

    Article  Google Scholar 

  32. Pöml P, Geisler T, Konings R. High-temperature heat capacity of zirconolite (CaZrTi2O7). J Chem Thermodyn. 2006;38(8):1013.

    Article  Google Scholar 

  33. Subramani T, Baker J, Xu H, Navrotsky A. Synthesis, characterization, and enthalpies of formation of uranium substituted zirconolites. ACS Earth Space Chem. 2020;4(10):1878–87.

    Article  CAS  Google Scholar 

  34. Salamat A, McMillan PF, Firth S, Woodhead K, Hector AL, Garbarino G, Stennett MC, Hyatt NC. Structural transformations and disordering in zirconolite (CaZrTi2O7) at high pressure. Inorg Chem. 2013;52(3):1550–8.

    Article  CAS  PubMed  Google Scholar 

  35. Jafar M, Achary SN, Salke NP, Sahu AK, Rao R, Tyagi AK. X-ray diffraction and Raman spectroscopic investigations on CaZrTi2O7-Y2Ti2O7 system: Delineation of phase fields consisting of potential ceramic host materials. J Nucl Mater. 2016;475:192–9.

    Article  CAS  Google Scholar 

  36. Jafar M, Phapale S, Achary SN, Mishra R, Tyagi AK. High-temperature crystallographic and thermodynamic investigations on synthetic zirconolite (CaZrTi2O7). J Therm Anal. 2017;131:2709–18.

    Article  Google Scholar 

  37. Vance ER, Ball CJ, Blackford MG, Cassidy DJ, Smith KL. Crystallization of zirconolite from an alkoxide precursor. J Nucl Mater. 1990;175(1–2):58–66.

    Article  CAS  Google Scholar 

  38. Muthuraman M, Dhas NA, Patil KC. Combustion synthesis of oxide materials for nuclear waste immobilization. Bull Mater Sci. 1994;17(6):977–87.

    Article  CAS  Google Scholar 

  39. Gilbert MR. Molten salt synthesis of zirconolite polytypes. MRS Online Proc Lib (OPL) Symposium NW—Scientific Basis for Nuclear Waste Management XXXVII. 2014; 1665:325–330.

  40. Zhang K, Wen G, Jia Z, Teng Y, Zhang H. Self-propagating high-temperature synthesis of zirconolite using CuO and MoO3 as the oxidants. Int J Appl Ceram tech. 2015;12 S 3:E111.

    Article  Google Scholar 

  41. Wang S, Song Z, Teng Y, Wang L. Novel method to synthesis of single phase zirconolite ceramic. Adv Appl Ceram. 2015;114(3):188–90.

    Article  CAS  Google Scholar 

  42. Sun SK, Stennett MC, Corkhill CL, Hyatt NC. Reactive spark plasma synthesis of CaZrTi2O7 zirconolite ceramics for plutonium disposition. J Nucl Mater. 2018;500:11–4.

    Article  Google Scholar 

  43. McCaugherty S, Grosvenor AP. Low-temperature synthesis of CaZrTi2O7 zirconolite-type materials using ceramic, coprecipitation, and sol–gel methods. J Mater Chem C. 2019;7:177–87.

    Article  CAS  Google Scholar 

  44. Sandeep K, Thomas JK, Solomon S. Synthesis, and characterization of AZrTi2O7 (A = Mg, Ca, Sr, and Ba) functional nanoceramics. J Electroceramics. 2019;43:1–9.

    Article  Google Scholar 

  45. Gorski A, Krasnicka A. Influence of the cation on the formation of free hydrogen and formaldehyde in the thermal decomposition of formats. J Therm Anal. 1987;32:1345–54.

    Article  CAS  Google Scholar 

  46. Gorski A, Krasnicka A. Origin of organic gaseous formed in the thermal decomposition of formates. J Therm Anal. 1987;321:243–1251.

    Google Scholar 

  47. Muthuraman M, Patil KC. Sintering, microstructural and dilatometric studies of combustion synthesized synroc phases. Mater Res Bull. 1996;31(1):1375–81.

    Article  CAS  Google Scholar 

  48. Roberts RB, White GK, Buykx WJ, Cassidy DJ. Thermal expansion of synroc minerals. J Nucl Mater. 1987;148:353–5.

    Article  CAS  Google Scholar 

  49. Ball CJ, Thorogood GJ, Vance ER. Thermal expansion coefficients of zirconolite (CaZrTi2O7) and perovskite (CaTiO3) from X-ray powder diffraction analysis. J Nucl Mater. 1992;190(1):298–301.

    Article  CAS  Google Scholar 

  50. Muthuraman M, Patil KC, Senbagaraman S, Umarji AM. Sintering, microstructural and dilatometric studies of combustion synthesized synroc phases. Mater Res Bull. 1996;31(1):1375–81.

    Article  CAS  Google Scholar 

  51. Buykx WJ. Specific heat, thermal diffusivity and thermal conductivity of synroc, perovskite, zirconolite and barium hollandite. J Nucl Mater. 1982;107:78–82.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The SAIF facilities, IIT-B Mumbai and NCNNUM, University of Mumbai are specially acknowledged for their characterization facilities such as SEM, TEM and TGA etc. Mr. Harishchandra Nishad from NCNNUM has been acknowledged for SAED pattern indexing.

Author information

Authors and Affiliations

Authors

Contributions

BMP performed the synthesis and characterization and wrote the manuscript. GCW, ACC and PSW corrected the manuscript. All authors discussed the results, helped shape the research as well as read and approved the final manuscript.

Corresponding author

Correspondence to Bhimarao M. Patil.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, B.M., Wadhawa, G.C., Chaskar, A.C. et al. Low-temperature synthesis and thermal expansion of nanocrystalline monoclinic zirconolite ceramics. J Therm Anal Calorim 148, 7591–7596 (2023). https://doi.org/10.1007/s10973-023-12269-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12269-z

Keyword

Navigation