Log in

MHD gyrotactic microorganisms upper convected Maxwell fluid flow in the presence of nonlinear thermal radiation: numerical approach Lobatto IIIA technique

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Bioconvection research is essential due to its widespread use in the domains of biofuels and bioengineering. This study investigates the numerical behavior of megnetohydrodynamic bioconvection boundary layer flow of motile microorganisms in upper convected Maxwell fluid via a renewed bvp4c-based Lobatto IIIA solver. To stabilize the nanoparticles in suspension, microorganisms are used that cause bioconvection. The flow past stretchable sheets is under the influence of heat and mass transfer, nonlinear thermal radiation, and viscous dissipation. Suitable similarity transformations are adopted to amend PDEs’ system of governing equations into ODEs’ system. Visualize graphical and numerical presentations that show the influence of physical parameters, such as flow rate, temperature gradient, nanofluid concentration, and gyrotactic motile microorganism concentration. Physical quantities such as skin friction, Nusselt number, Sherwood number, and local density of microorganisms are also taken into consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Data availability

All data used in this manuscript have been presented within the article.

References

  1. Choi SU, Eastman J. Enhancing thermal conductivity of fluids with nanoparticles (No ANL/MSD/CP-84938; CONF-951135-29). IL: Argonne National Lab; 1995.

    Google Scholar 

  2. Khan WA, Gorla RSR. Heat and mass transfer in non-Newtonian nanofluids over a non-isothermal stretching wall. Proc Inst Mech Eng Part N J Nano Eng Nano Syst. 2011;225:155–63.

    CAS  Google Scholar 

  3. Dehghani MS, Toghraie D, Mehmandoust B. Effect of MHD on the flow and heat transfer characteristics of nanofluid in a grooved channel with internal heat generation. Int J Numer Meth Heat Fluid Flow. 2018;29(4):1403–31.

    Google Scholar 

  4. Toghraie D. Numerical simulation on MHD mixed convection of Cu-water nanofluid in a trapezoidal lid-driven cavity. Int J Appl Electromagn Mech. 2020;62(4):683–710.

    Google Scholar 

  5. Talebizadehsardari P, Shahsavar A, Toghraie D, Barnoon P. An experimental investigation for study the rheological behavior of water–carbon nanotube/magnetite nanofluid subjected to a magnetic field. Phys A. 2019;534:122129.

    CAS  Google Scholar 

  6. Sheikholeslami M, Soleimani S, Ganji DD. Effect of electric field on hydrothermal behavior of nanofluid in a complex geometry. J Mol Liq. 2016;213:153–61.

    CAS  Google Scholar 

  7. Rashidi MM, Yang Z, Awais M, Nawaz M, Hayat T. Generalized magnetic field effects in Burgers’ nanofluid model. PLoS ONE. 2017;12(1):e0168923.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Khan NS, Zuhra S, Shah Q. Entropy generation in two phase model for simulating flow and heat transfer of carbon nanotubes between rotating stretchable disks with autocatalysis chemical reaction. Appl Nanosci. 2019;9(8):1797–822.

    CAS  Google Scholar 

  9. Khan NS, Gul T, Kumam P, Shah Z, Islam S, Khan W, Zuhra S, Sohail A. Influence of inclined magnetic field on Carreau nanoliquid thin film flow and heat transfer with graphene nanoparticles. Energies. 2019;12(8):1459.

    CAS  Google Scholar 

  10. Bilal S, Shah IA, Akgül A, Tekin MT, Botmart T, Yahia IS. A comprehensive mathematical structuring of magnetically effected Sutterby fluid flow immersed in dually stratified medium under boundary layer approximations over a linearly stretched surface. Alex Eng J. 2022;61(12):11889–98.

    Google Scholar 

  11. Qureshi ZA, Bilal S, Khan U, Akgül A, Sultana M, Botmart T, Zahran HY, Yahia IS. Mathematical analysis about influence of Lorentz force and interfacial nano layers on nanofluids flow through orthogonal porous surfaces with injection of SWCNTs. Alex Eng J. 2022;61(12):12925–41.

    Google Scholar 

  12. Shah IA, Bilal S, Akgül A, Tekin MT, Botmart T, Zahran HY, Yahia IS. On analysis of magnetized viscous fluid flow in permeable channel with single wall carbon nano tubes dispersion by executing nano-layer approach. Alex Eng J. 2022;61(12):11737–51.

    Google Scholar 

  13. Barnoon P, Toghraie D, Dehkordi RB, Abed H. MHD mixed convection and entropy generation in a lid-driven cavity with rotating cylinders filled by a nanofluid using two phase mixture model. J Magn Magn Mater. 2019;483:224–48.

    CAS  Google Scholar 

  14. Shekaramiz M, Fathi S, Ataabadi HA, Kazemi-Varnamkhasti H, Toghraie D. MHD nanofluid free convection inside the wavy triangular cavity considering periodic temperature boundary condition and velocity slip mechanisms. Int J Therm Sci. 2021;170:107179.

    CAS  Google Scholar 

  15. Platt JA. A numerical and experimental study of the effect of meniscus shape on combined thermocapillary and natural convection flow (Doctoral dissertation, Case Western Reserve University) 1988.

  16. Kuznetsov AV. The onset of nanofluid bioconvection in a suspension containing both nanoparticles and gyrotactic microorganisms. Int Commun Heat Mass Transf. 2010;37(10):1421–5.

    CAS  Google Scholar 

  17. Khan SU, Al-Khaled K, Aldabesh A, Awais M, Tlili I. Bioconvection flow in accelerated couple stress nanoparticles with activation energy: bio-fuel applications. Sci Rep. 2021;11(1):1–15.

    CAS  Google Scholar 

  18. Ahmad I, Aziz S, Ali N, Khan SU, Khan MI, Tlili I, Khan NB. Thermally developed Cattaneo-Christov Maxwell nanofluid over bidirectional periodically accelerated surface with gyrotactic microorganisms and activation energy. Alex Eng J. 2020;59(6):4865–78.

    Google Scholar 

  19. Waqas H, Khan SU, Shehzad SA, Imran M. Radiative flow of Maxwell nanofluid containing gyrotactic microorganism and energy activation with convective Nield conditions. Heat Transf Asian Res. 2019;48(5):1663–87.

    Google Scholar 

  20. Tlili I, Ramzan M, Nisa HU, Shutaywi M, Shah Z, Kumam P. Onset of gyrotactic microorganisms in MHD Micropolar nanofluid flow with partial slip and double stratification. J King Saud Univ-Sci. 2020;32(6):2741–51.

    Google Scholar 

  21. Khan NS, Shah Q, Sohail A. Dynamics with Cattaneo-Christov heat and mass flux theory of bioconvection Oldroyd-B nanofluid. Adv Mech Eng. 2020;12(7):1–20.

    Google Scholar 

  22. Zuhra S, Khan NS, Alam M, Islam S, Khan A. Buoyancy effects on nanoliquids film flow through a porous medium with gyrotactic microorganisms and cubic autocatalysis chemical reaction. Adv Mech Eng. 2020;12(1):1687814019897510.

    CAS  Google Scholar 

  23. Shateyi S, Motsa SS. Variable viscosity on magnetohydrodynamic fluid flow and heat transfer over an unsteady stretching surface with Hall effect. Bound Value Probl. 2010;2010:1–20.

    Google Scholar 

  24. Kumari M, Nath G. Steady mixed convection stagnation-point flow of upper convected Maxwell fluids with magnetic field. Int J Non-Linear Mech. 2009;44(10):1048–55.

    Google Scholar 

  25. Saleem S, Awais M, Nadeem S, Sandeep N, Mustafa MT. Theoretical analysis of upper-convected Maxwell fluid flow with Cattaneo-Christov heat flux model. Chin J Phys. 2017;55(4):1615–25.

    Google Scholar 

  26. Liao S. On the homotopy analysis method for nonlinear problems. Appl Math Comput. 2004;147(2):499–513.

    Google Scholar 

  27. Marinca V, Herişanu N, Nemeş I. Optimal homotopy asymptotic method with application to thin film flow. Open Phys. 2008;6(3):648–53.

    Google Scholar 

  28. He JH. Homotopy perturbation method: a new nonlinear analytical technique. Appl Math Comput. 2003;135(1):73–9.

    Google Scholar 

  29. Wazwaz AM. A reliable modification of Adomian decomposition method. Appl Math Comput. 1999;102(1):77–86.

    Google Scholar 

  30. Zienkiewicz OC, Taylor RL. The finite element method, vol. 2. Oxford: Butterworth-Heinemann; 2000.

    Google Scholar 

  31. Liszka T, Orkisz J. The finite difference method at arbitrary irregular grids and its application in applied mechanics. Comput Struct. 1980;11(1–2):83–95.

    Google Scholar 

  32. Butcher JC. On the implementation of implicit Runge-Kutta methods. BIT Numer Math. 1976;16(3):237–40.

    Google Scholar 

  33. Shampine LF, Kierzenka J, Reichelt MW. Solving boundary value problems for ordinary differential equations in MATLAB with bvp4c. Tutor Notes. 2000;2000:1–27.

    Google Scholar 

  34. Nagoor AH, Alaidarous ES, Sabir MT, Shoaib M, Raja MAZ. Numerical treatment for three-dimensional rotating flow of carbon nanotubes with Darcy-Forchheimer medium by the Lobatto IIIA technique. AIP Adv. 2020;10(2):025016.

    CAS  Google Scholar 

  35. Khan WU, He Y, Raja MAZ, Chaudhary NI, Khan ZA, Shah SM. Flower pollination heuristics for nonlinear active noise control systems. CMC-Comput Mater Contin. 2021;67(1):815–34.

    Google Scholar 

  36. Ilyas H, Ahmad I, Raja MAZ, Tahir MB, Shoaib M. Intelligent computing for the dynamics of fluidic system of electrically conducting Ag/Cu nanoparticles with mixed convection for hydrogen possessions. Int J Hydrog Energy. 2021;46(7):4947–80.

    CAS  Google Scholar 

  37. Sabir Z, Raja MAZ, Wahab HA, Shoaib M, Aguilar JG. Integrated neuro‐evolution heuristic with sequential quadratic programming for second‐order prediction differential models. Numer Methods Partial Differ Equ 2020.

  38. Umar M, Sabir Z, Raja MAZ, Amin F, Saeed T, Sanchez YG. Integrated neuro-swarm heuristic with interior-point for nonlinear SITR model for dynamics of novel COVID 19. Alex Eng J. 2021;60(3):2811–24.

    Google Scholar 

  39. Iqbal MS, Yasin MW, Ahmed N, Akgül A, Rafiq M, Raza A. Numerical simulations of nonlinear stochastic Newell-Whitehead-Segel equation and its measurable properties. J Comput Appl Math. 2023;418:114618.

    Google Scholar 

  40. Attia N, Akgül A, Seba D, Nour A, Asad J. A novel method for fractal-fractional differential equations. Alex Eng J. 2022;61(12):9733–48.

    Google Scholar 

  41. Farman M, Akgül A, Tekin MT, Akram MM, Ahmad A, Mahmoud EE, Yahia IS. Fractal fractional-order derivative for HIV/AIDS model with Mittag-Leffler kernel. Alex Eng J. 2022;61(12):10965–80.

    Google Scholar 

  42. Modanli M, Göktepe E, Akgül A, Alsallami SA, Khalil EM. Two approximation methods for fractional order Pseudo-Parabolic differential equations. Alex Eng J. 2022;61(12):10333–9.

    Google Scholar 

  43. Xu C, Farman M, Hasan A, Akgül A, Zakarya M, Albalawi W, Park C. Lyapunov stability and wave analysis of Covid-19 omicron variant of real data with fractional operator. Alex Eng J. 2022;61(12):11787–802.

    Google Scholar 

  44. Renardy M. High Weissenberg number boundary layers for the upper converted Maxwell fluid. J Nonnewton Fluid Mech. 1997;68(1):125–32.

    CAS  Google Scholar 

  45. Sadeghy K, Hajibeygi H, Taghavi S. Stagnation-point flow of upper-convected Maxwell fluids. Int J Non-Linear Mech. 2006;41(10):1242–7.

    Google Scholar 

  46. Pedley TJ, Kessler JO. Hydrodynamic phenomena in suspensions of swimming microorganisms. Annu Rev Fluid Mech. 1992;24(1):313–58.

    Google Scholar 

  47. Ramzan M, Bilal M, Farooq U, Chung JD. Mixed convective radiative flow of second grade nanofluid with convective boundary conditions: an optimal solution. Results Phys. 2016;6:796–804.

    Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Abha, Saudi Arabia, for funding this work through the Research Group Project under Grant Number (RGP.2/300/44).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anwar Saeed.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Algehyne, E.A., Zuhra, S., Raizah, Z. et al. MHD gyrotactic microorganisms upper convected Maxwell fluid flow in the presence of nonlinear thermal radiation: numerical approach Lobatto IIIA technique. J Therm Anal Calorim 148, 6791–6805 (2023). https://doi.org/10.1007/s10973-023-12204-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12204-2

Keywords

Navigation