Log in

Application of artificial intelligence on the CO2 capture: a review

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Unleashing greenhouse gases especially CO2 has been proven to be detrimental in many aspects both globally and individually. Numerous techniques and models have been developed so far to achieve the best-matched outputs in terms of their coincidence to the empirical data. Among them, those which are based on artificial intelligence have gained more attention on the account of their outstanding potential to decode the relationships between inputs and outputs. The selection of the best AI-based technique for implementation of the CO2 approaches is fairly vital as it plays a crucial role to yield the most accurate results. This article has been assigned to scrutinize a relatively broad range of AI-based techniques by reviewing research works which were used to carry out CO2 capture to fully understand and compare their advantages and disadvantages and throw light on promising research areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Liu J, Liu Y, Wang X. An environmental assessment model of construction and demolition waste based on system dynamics: a case study in Guangzhou. Environ Sci Pollut Res . 2020;27:37237–59.

    Article  Google Scholar 

  2. He L, Shen J, Zhang Y. Ecological vulnerability assessment for ecological conservation and environmental management. J Environ Manage. 2018;206:1115–25.

    Article  PubMed  Google Scholar 

  3. Yang M, Sowmya A. An underwater color image quality evaluation metric. IEEE Trans Image Process IEEE. 2015;24:6062–71.

    Article  Google Scholar 

  4. Zhang K, Wang Q, Chao L, Ye J, Li Z, Yu Z, et al. Ground observation-based analysis of soil moisture spatiotemporal variability across a humid to semi-humid transitional zone in China. J Hydrol. 2019;574:903–14.

    Article  Google Scholar 

  5. Liu W, Shadloo MS, Tlili I, Maleki A, Bach Q-V. The effect of alcohol–gasoline fuel blends on the engines’ performances and emissions. Fuel. 2020;276:117977.

    Article  CAS  Google Scholar 

  6. Shadloo MS, Poultangari R, Jamalabadi MYA, Rashidi MM. A new and efficient mechanism for spark ignition engines. Energy Convers Manag. 2015;96:418–29.

    Article  Google Scholar 

  7. Zhang B, Xu D, Liu Y, Li F, Cai J, Du L. Multi-scale evapotranspiration of summer maize and the controlling meteorological factors in north China. Agric For Meteorol. 2016;216:1–12.

    Article  Google Scholar 

  8. Tian P, Lu H, Feng W, Guan Y, Xue Y. Large decrease in streamflow and sediment load of Qinghai-Tibetan Plateau driven by future climate change: a case study in Lhasa River Basin. CATENA. 2020;187:104340.

    Article  Google Scholar 

  9. Lu H, Guan Y, He L, Adhikari H, Pellikka P, Heiskanen J, et al. Patch aggregation trends of the global climate landscape under future global warming scenario. Int J Climatol. 2020;40:2674–85.

    Article  Google Scholar 

  10. Lu H, Tian P, He L. Evaluating the global potential of aquifer thermal energy storage and determining the potential worldwide hotspots driven by socio-economic, geo-hydrologic and climatic conditions. Renew Sustain Energy Rev. 2019;112:788–96.

    Article  Google Scholar 

  11. Zhao X, Ye Y, Ma J, Shi P, Chen H. Construction of electric vehicle driving cycle for studying electric vehicle energy consumption and equivalent emissions. Environ Sci Pollut Res. 2020;30:1–15.

    Google Scholar 

  12. Hu X, Chong H-Y, Wang X. Sustainability perceptions of off-site manufacturing stakeholders in Australia. J Clean Prod. 2019;227:346–54.

    Article  Google Scholar 

  13. Wang B, Song Z, Sun L. A review: comparison of multi-air-pollutant removal by advanced oxidation processes–Industrial implementation for catalytic oxidation processes. Chem Eng J. 2020;409:128136.

    Article  CAS  Google Scholar 

  14. Yang C, Gao F, Dong M. Energy efficiency modeling of integrated energy system in coastal areas. J Coast Res. 2020;103:995–1001.

    Article  Google Scholar 

  15. Hu J, Zhang H, Li Z, Zhao C, Xu Z, Pan Q. Object traversing by monocular UAV in outdoor environment. Asian J Control; 2020.

  16. He L, Chen Y, Zhao H, Tian P, Xue Y, Chen L. Game-based analysis of energy-water nexus for identifying environmental impacts during Shale gas operations under stochastic input. Sci Total Environ. 2018;627:1585–601.

    Article  CAS  PubMed  Google Scholar 

  17. Han X, Zhang D, Yan J, Zhao S, Liu J. Process development of flue gas desulphurization wastewater treatment in coal-fired power plants towards Zero Liquid Discharge: Energetic, economic and environmental analyses. J Clean Prod. 2020;261:121144.

    Article  CAS  Google Scholar 

  18. Yang X, Li Q, Lu E, Wang Z, Gong X, Yu Z, Guo Y, Wang L, Guo Y, Zhan W, Zhang J. Taming the stability of Pd active phases through a compartmentalizing strategy toward nanostructured catalyst supports. Nature communications. 2019;10(1):1–9.

    CAS  Google Scholar 

  19. Amini Y, Fattahi M, Khorasheh F, Sahebdelfar S. Neural network modeling the effect of oxygenate additives on the performance of Pt–Sn/γ-Al 2 O 3 catalyst in propane dehydrogenation. Appl Petrochemical Res. 2013;3:47–54.

    Article  CAS  Google Scholar 

  20. Chen Y, He L, Guan Y, Lu H, Li J. Life cycle assessment of greenhouse gas emissions and water-energy optimization for shale gas supply chain planning based on multi-level approach: Case study in Barnett, Marcellus, Fayetteville, and Haynesville shales. Energy Convers Manag. 2017;134:382–98.

    Article  Google Scholar 

  21. Chen Y, He L, Li J, Zhang S. Multi-criteria design of shale-gas-water supply chains and production systems towards optimal life cycle economics and greenhouse gas emissions under uncertainty. Comput Chem Eng. 2018;109:216–35.

    Article  CAS  Google Scholar 

  22. Aghel B, Sahraie S, Heidaryan E. Comparison of aqueous and non-aqueous alkanolamines solutions for carbon dioxide desorption in a microreactor. Energy. 2020;201:117618.

    Article  CAS  Google Scholar 

  23. Ghiasi MM, Mohammadi AH. Rigorous modeling of CO2 equilibrium absorption in MEA, DEA, and TEA aqueous solutions. J Nat Gas Sci Eng. 2014;18:39–46.

    Article  CAS  Google Scholar 

  24. Safari M, Ghanizadeh A, Montazer-Rahmati MM. Optimization of membrane-based CO2-removal from natural gas using simple models considering both pressure and temperature effects. Int J Greenh Gas Control. 2009;3:3–10.

    Article  CAS  Google Scholar 

  25. Ben-Mansour R, Habib MA, Bamidele OE, Basha M, Qasem NAA, Peedikakkal A, et al. Carbon capture by physical adsorption: materials, experimental investigations and numerical modeling and simulations—A review. Appl Energy. 2016;161:225–55.

    Article  CAS  Google Scholar 

  26. Turley C. Ocean acidification. A national strategy to meet the challenges of a changing ocean. Fish Fish. 2011;12:352–4.

    Article  Google Scholar 

  27. He L, Chen Y, Li J. A three-level framework for balancing the tradeoffs among the energy, water, and air-emission implications within the life-cycle shale gas supply chains. Resour Conserv Recycl. 2018;133:206–28.

    Article  Google Scholar 

  28. Ghiasi MM, Bahadori A, Zendehboudi S, Jamili A, Rezaei-Gomari S. Novel methods predict equilibrium vapor methanol content during gas hydrate inhibition. J Nat Gas Sci Eng. 2013;15:69–75.

    Article  CAS  Google Scholar 

  29. Rochelle GT. Amine Scrubbing for CO2 Capture. Science. 2009;325:1652–4.

    Article  CAS  PubMed  Google Scholar 

  30. Rufford TE, Smart S, Watson GCY, Graham BF, Boxall J, Diniz da Costa JC, et al. The removal of CO2 and N2 from natural gas: a review of conventional and emerging process technologies. J Pet Sci Eng. 2012;94–95:123–54.

    Article  CAS  Google Scholar 

  31. Herslund PJ, Thomsen K, Abildskov J, von Solms N. Phase equilibrium modeling of gas hydrate systems for CO2 capture. J Chem Thermodyn. 2012;48:13–27.

    Article  CAS  Google Scholar 

  32. Ghiasi MM, Arabloo M, Mohammadi AH, Barghi T. Application of ANFIS soft computing technique in modeling the CO2 capture with MEA, DEA, and TEA aqueous solutions. Int J Greenh Gas Control. 2016;49:47–54.

    Article  CAS  Google Scholar 

  33. Aghel B, Sahraie S, Heidaryan E. Carbon dioxide desorption from aqueous solutions of monoethanolamine and diethanolamine in a microchannel reactor. Sep Purif Technol. 2020;237:116390.

    Article  CAS  Google Scholar 

  34. Aghel B, Heidaryan E, Sahraie S, Mir S. Application of the microchannel reactor to carbon dioxide absorption. J Clean Prod. 2019;231:723.

    Article  CAS  Google Scholar 

  35. Aghel B, Heidaryan E, Sahraie S, Nazari M. Optimization of monoethanolamine for CO2 absorption in a microchannel reactor. J CO2 Util. 2018;28:264–73.

    Article  CAS  Google Scholar 

  36. Aghel B, Sahraie S, Heidaryan E, Varmira K. Experimental study of carbon dioxide absorption by mixed aqueous solutions of methyl diethanolamine (MDEA) and piperazine (PZ) in a microreactor. Process Saf Environ Prot. 2019;131:152–9.

    Article  CAS  Google Scholar 

  37. Shi H, Fu J, Wu Q, Huang M, Jiang L, Cui M, et al. Studies of the coordination effect of DEA-MEA blended amines (within 1 + 4 to 2 + 3 M) under heterogeneous catalysis by means of absorption and desorption parameters. Sep Purif Technol. 2019;236:116179.

    Article  CAS  Google Scholar 

  38. Li H, Yan D, Zhang Z, Lichtfouse E. Prediction of CO2 absorption by physical solvents using a chemoinformatics-based machine learning model. Environ Chem Lett. 2019;17:1397–404.

    Article  CAS  Google Scholar 

  39. Rao AB, Rubin ES. A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. Environ Sci Technol. 2002;36:4467–75.

    Article  CAS  PubMed  Google Scholar 

  40. Ding S, Liu Y. Adsorption of CO2 from flue gas by novel seaweed-based KOH-activated porous biochars. Fuel. 2020;260:116382.

    Article  CAS  Google Scholar 

  41. Zheng Y, Li Q, Yuan C, Tao Q, Zhao Y, Zhang G, et al. Influence of temperature on adsorption selectivity: coal-based activated carbon for CH4 enrichment from coal mine methane. Powder Technol. 2019;347:42–9.

    Article  CAS  Google Scholar 

  42. Sonnleitner E, Schöny G, Hofbauer H. Assessment of zeolite 13X and Lewatit® VP OC 1065 for application in a continuous temperature swing adsorption process for biogas upgrading. Biomass Convers Biorefinery. 2018;8:379–95.

    Article  CAS  Google Scholar 

  43. Olajire AA. CO2 capture and separation technologies for end-of-pipe applications—a review. Energy. 2010;35:2610–28.

    Article  CAS  Google Scholar 

  44. Lillia S, Bonalumi D, Grande C, Manzolini G. A comprehensive modeling of the hybrid temperature electric swing adsorption process for CO2 capture. Int J Greenh Gas Control. 2018;74:155–73.

    Article  CAS  Google Scholar 

  45. Gupta M, Coyle I TK Strawman document for CO2 capture and storage technology roadmap. Canmet Energy Technol Centre Nat Resour. 2003

  46. Tuinier MJ, van Sint Annaland M, Kramer GJ, Kuipers JAM. Cryogenic <mml:math altimg="si31.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml. Chem Eng Sci. 2010;65:114–9.

  47. Liu C, Deng X, Liu J, Peng T, Yang S, Zheng Z. Dynamic response of saddle membrane structure under hail impact. Eng Struct. 2020;214:110597.

    Article  Google Scholar 

  48. Liu C, Wang F, Deng X, Pang S, Liu J, Wu Y, et al. Hailstone-induced dynamic responses of pretensioned umbrella membrane structure. Adv Struct Eng. 2020;24:1369433220940149.

    Google Scholar 

  49. Liu H, Liu X, Zhao F, Liu Y, Liu L, Wang L, et al. Preparation of a hydrophilic and antibacterial dual function ultrafiltration membrane with quaternized graphene oxide as a modifier. J Colloid Interface Sci. 2020;562:182–92.

    Article  CAS  PubMed  Google Scholar 

  50. Liu C, Wang F, He L, Deng X, Liu J, Wu Y. Experimental and numerical investigation on dynamic responses of the umbrella membrane structure excited by heavy rainfall. J Vib Control. 2020;27:1077546320932691.

    Google Scholar 

  51. Dastbaz A, Karimi-Sabet J, Ahadi H, Amini Y. Preparation and characterization of novel modified PVDF-HFP/GO/ODS composite hollow fiber membrane for Caspian Sea water desalination. Desalination. 2017;424:62–73.

    Article  CAS  Google Scholar 

  52. Iliuta I, Iliuta MC. Enhanced enzyme-based CO2 capture in countercurrent packed-bed column reactors. Sep Purif Technol. 2020;248:116908.

    Article  CAS  Google Scholar 

  53. Yang W, Pudasainee D, Gupta R, Li W, Wang B, Sun L. An overview of inorganic particulate matter emission from coal/biomass/MSW combustion: Sampling and measurement, formation, distribution, inorganic composition and influencing factors. Fuel Process Technol. 2020;213:106657.

    Article  CAS  Google Scholar 

  54. Li S, Fan S, Wang J, Lang X, Wang Y. Clathrate hydrate capture of CO2 from simulated flue gas with cyclopentane/water emulsion. Chin J Chem Eng. 2010;18:202–6.

    Article  CAS  Google Scholar 

  55. Jiang XQ, Chen WF, Guo LJ, Huang ZW. No-application of T-S fuzzy-neural network model in water quality comprehensive evaluation. Procedia Comput Sci. 2020;166:501–6. https://doi.org/10.1016/j.procs.2020.02.057.

    Article  Google Scholar 

  56. Liu J, Wang C, Sun H, Wang H, Rong F, He L, et al. CoOx/CoNy nanoparticles encapsulated carbon-nitride nanosheets as an efficiently trifunctional electrocatalyst for overall water splitting and Zn-air battery. Appl Catal B Environ. 2020;279:119407.

    Article  CAS  Google Scholar 

  57. Wu S, Wang L, Zhang P, El-Shall H, Moudgil B, Huang X, et al. Simultaneous recovery of rare earths and uranium from wet process phosphoric acid using solvent extraction with D2EHPA. Hydrometallurgy. 2018;175:109–16.

    Article  CAS  Google Scholar 

  58. Chen S, Hassanzadeh-Aghdam MK, Ansari R. An analytical model for elastic modulus calculation of SiC whisker-reinforced hybrid metal matrix nanocomposite containing SiC nanoparticles. J Alloys Compd . 2018;767:632–41.

    Article  CAS  Google Scholar 

  59. Wang Z, Huang Z, Brosnahan JT, Zhang S, Guo Y, Guo Y, Wang L, Wang Y, Zhan W. Ru/CeO2 catalyst with optimized CeO2 support morphology and surface facets for propane combustion. Environmental science & technology. 2019;53(9):5349–58.

    Article  CAS  Google Scholar 

  60. Liu Y, Zhang Q, Xu M, Yuan H, Chen Y, Zhang J, et al. Novel and efficient synthesis of Ag-ZnO nanoparticles for the sunlight-induced photocatalytic degradation. Appl Surf Sci. 2019;476:632–40.

    Article  CAS  Google Scholar 

  61. Tantekin-Ersolmaz ŞB, Atalay-Oral Ç, Tatlıer M, Erdem-Şenatalar A, Schoeman B, Sterte J. Effect of zeolite particle size on the performance of polymer–zeolite mixed matrix membranes. J Memb Sci. 2000;175:285–8.

    Article  CAS  Google Scholar 

  62. Zimmerman CM, Singh A, Koros WJ. Tailoring mixed matrix composite membranes for gas separations. J Memb Sci. 1997;137:145–54.

    Article  CAS  Google Scholar 

  63. Mahajan R, Koros WJ. Factors controlling successful formation of mixed-matrix gas separation materials. Ind Eng Chem Res. 2000;39:2692–6.

    Article  CAS  Google Scholar 

  64. Blamey J, Anthony EJ, Wang J, Fennell PS. The calcium loo** cycle for large-scale CO2 capture. Prog Energy Combust Sci. 2010;36:260–79.

    Article  CAS  Google Scholar 

  65. Abanades JC, Alonso M, Rodriguez N. Experimental validation of in situ CO2 capture with CaO during the low temperature combustion of biomass in a fluidized bed reactor. Int J Greenh Gas Control. 2011;5:512–20.

    Article  CAS  Google Scholar 

  66. Anthony EJ. Solid loo** cycles: a new technology for coal conversion. Ind Eng Chem Res. 2008;47:1747–54.

    Article  CAS  Google Scholar 

  67. Harrison DP. Sorption-enhanced hydrogen production: a review. Ind Eng Chem Res. 2008;47:6486–501.

    Article  CAS  Google Scholar 

  68. Deng X, Yang W, Li S, Liang H, Shi Z, Qiao Z. Large-scale screening and machine learning to predict the computation-ready, experimental metal-organic frameworks for CO2 capture from air. Appl Sci. 2020;10:569.

    Article  CAS  Google Scholar 

  69. Wang M, Hu M, Li Z, He L, Song Y, Jia Q, et al. Construction of Tb-MOF-on-Fe-MOF conjugate as a novel platform for ultrasensitive detection of carbohydrate antigen 125 and living cancer cells. Biosens Bioelectron. 2019;142:111536.

    Article  PubMed  CAS  Google Scholar 

  70. Zhang Z, Li H, Chang H, Pan Z, Luo X. Machine learning predictive framework for CO2 thermodynamic properties in solution. J CO2 Util. 2018;26:152–9.

    Article  CAS  Google Scholar 

  71. Han X, Chen N, Yan J, Liu J, Liu M, Karellas S. Thermodynamic analysis and life cycle assessment of supercritical pulverized coal-fired power plant integrated with No. 0 feedwater pre-heater under partial loads. J Clean Prod. 2019;233:1106–22.

    Article  Google Scholar 

  72. Dureckova H, Krykunov M, Aghaji MZ, Woo TK. Robust machine learning models for predicting high CO2 working capacity and CO2/H2 selectivity of gas adsorption in metal organic frameworks for precombustion carbon capture. J Phys Chem C. 2019;123:4133–9.

    Article  CAS  Google Scholar 

  73. Menad NA, Hemmati-Sarapardeh A, Varamesh A, Shamshirband S. Predicting solubility of CO2 in brine by advanced machine learning systems: Application to carbon capture and sequestration. J Util. 2019;33:83–95.

    Article  CAS  Google Scholar 

  74. Leperi KT, Yancy-Caballero D, Snurr RQ, You F. 110th Anniversary: surrogate models based on artificial neural networks to simulate and optimize pressure swing adsorption cycles for CO2 capture. Ind Eng Chem Res. 2019;58:18241–52.

    Article  CAS  Google Scholar 

  75. Chen A, Zhang X, Chen L, Yao S, Zhou Z. A machine learning model on simple features for CO2 reduction electrocatalysts. J Phys Chem C. 2020;124:22471–8.

    Article  CAS  Google Scholar 

  76. Vo ND, Oh DH, Kang J-H, Oh M, Lee C-H. Dynamic-model-based artificial neural network for H2 recovery and CO2 capture from hydrogen tail gas. Appl Energy. 2020;273:115263.

    Article  CAS  Google Scholar 

  77. Mesbah M, Shahsavari S, Soroush E, Rahaei N, Rezakazemi M. Accurate prediction of miscibility of CO2 and supercritical CO2 in ionic liquids using machine learning. J Util. 2018;25:99–107.

    Article  CAS  Google Scholar 

  78. Zhang H, Qiu Z, Cao J, Abdel-Aty M, **ong L. Event-triggered synchronization for neutral-type semi-markovian neural networks with partial mode-dependent time-varying delays. IEEE Trans Neural Networks Learn Syst. 2019;31:4437.

    Article  Google Scholar 

  79. Zhang Z, Chen F, Rezakazemi M, Zhang W, Lu C, Chang H, et al. Modeling of a CO2-piperazine-membrane absorption system. Chem Eng Res Des. 2018;131:375–84.

    Article  CAS  Google Scholar 

  80. Mirarab M, Sharifi M, Behzadi B, Ghayyem MA. Intelligent prediction of CO2 capture in propyl amine methyl imidazole alanine ionic liquid: an artificial neural network model. Sep Sci Technol. 2015;50:26–37.

    Article  CAS  Google Scholar 

  81. Sedaghat M, Rouhibakhsh K. Investigation of carbon dioxide capture and storage by a novel LSSVM-GA method. Pet Sci Technol. 2020;38:421–7.

    Article  CAS  Google Scholar 

  82. Liu S, Yu W, Chan FTS, Niu B. A variable weight-based hybrid approach for multi-attribute group decision making under interval-valued intuitionistic fuzzy sets. Int J Intell Syst. 2020;36:1015.

    Article  Google Scholar 

  83. Zhang C, Chen Z, Wang J, Liu Z, Chen CLP. Fuzzy adaptive two-bit-triggered control for a class of uncertain nonlinear systems with actuator failures and dead-zone constraint. IEEE Trans Cybern. 2020;51:210.

    Article  PubMed  Google Scholar 

  84. Chen H, Qiao H, Xu L, Feng Q, Cai K. A fuzzy optimization strategy for the implementation of RBF LSSVR model in Vis–NIR analysis of pomelo maturity. IEEE Trans Ind Informatics IEEE. 2019;15:5971–9.

    Article  Google Scholar 

  85. Li C, Sun L, Xu Z, Wu X, Liang T, Shi W. Experimental investigation and error analysis of high precision FBG displacement sensor for structural health monitoring. Int J Struct Stab Dyn. 2020;20:2040011.

    Article  Google Scholar 

  86. Ali Ahmadi M, Ahmadi A. Applying a sophisticated approach to predict CO 2 solubility in brines: application to CO2 sequestration. Int J Low-Carbon Technol. 2016;11:325–32.

    Article  CAS  Google Scholar 

  87. Soroush E, Mesbah M, Hajilary N, Rezakazemi M. ANFIS modeling for prediction of CO2 solubility in potassium and sodium based amino acid Salt solutions. J Environ Chem Eng. 2019;7:102925.

    Article  CAS  Google Scholar 

  88. Zhou Q, Wu Y, Chan CW, Tontiwachwuthikul P. Applications of three data analysis techniques for modeling the carbon dioxide capture process. CCECE. 2010;3:1–4.

    CAS  Google Scholar 

  89. Cai C, Gao X, Teng Q, Kiran R, Liu J, Wei Q, et al. Hot isostatic pressing of a near α-Ti alloy: temperature optimization, microstructural evolution and mechanical performance evaluation. Mater Sci Eng A. 2020;802:140426.

    Article  CAS  Google Scholar 

  90. Zhang R, Jiang T, Li F, Li G, Chen H, Li X. Coordinated bidding strategy of wind farms and power-to-gas facilities using a cooperative game approach. IEEE Trans Sustain Energy IEEE. 2020;11:2545–55.

    Article  Google Scholar 

  91. Baghban A, Rajabi H, Jamshidi N. ANFIS modeling of carbon dioxide capture from gas stream emissions in the petrochemical production units. Pet Sci Technol. 2017;35:625–31.

    Article  CAS  Google Scholar 

  92. Bai B, Guo Z, Zhou C, Zhang W, Zhang J. Application of adaptive reliability importance sampling-based extended domain PSO on single mode failure in reliability engineering. Inf Sci (Ny). 2021;546:42–59.

    Article  Google Scholar 

  93. Shi K, Tang Y, Zhong S, Yin C, Huang X, Wang W. Nonfragile asynchronous control for uncertain chaotic Lurie network systems with Bernoulli stochastic process. Int J Robust Nonlinear Control. 2018;28:1693–714.

    Article  Google Scholar 

  94. **ong L, Zhang H, Li Y, Liu Z. Improved stability and H∞ performance for neutral systems with uncertain Markovian jump. Nonlinear Anal Hybrid Syst. 2016;19:13–25.

    Article  Google Scholar 

  95. Amini Y, Gerdroodbary MB, Pishvaie MR, Moradi R, Monfared SM. Optimal control of batch cooling crystallizers by using genetic algorithm. Case Stud Therm Eng. 2016;8:300–10.

    Article  Google Scholar 

  96. MS Shadloo (2020)Application of support vector machines for accurate prediction of convection heat transfer coefficient of nanofluids through circular pipes.Int J Numer Methods Heat Fluid Flow

  97. Wang B, Zhang L, Ma H, Wang H, Wan S (2019) Parallel LSTM-based regional integrated energy system multienergy source-load information interactive energy prediction. Complexity

  98. Bemani A, Baghban A, Mosavi A, Shahab S. Estimating CO2-Brine diffusivity using hybrid models of ANFIS and evolutionary algorithms. Eng Appl Comput Fluid Mech. 2020;14:818–34.

    Google Scholar 

  99. Qu S, Han Y, Wu Z, Raza H (2020) Consensus modeling with asymmetric cost based on data-driven robust optimization. Gr Decis Negot 1–38.

  100. Wang J, Huang Y, Wang T, Zhang C, hui Liu Y. Fuzzy finite-time stable compensation control for a building structural vibration system with actuator failures. Appl Soft Comput. 2020;93:106372.

    Article  Google Scholar 

  101. Wang J, Zhu P, He B, Deng G, Zhang C, Huang X. An adaptive neural sliding mode control with ESO for uncertain nonlinear systems. Int J Control Autom Syst. 2020;19:1–11.

    CAS  Google Scholar 

  102. Zhang X, Wang Y, Chen X, Su C-Y, Li Z, Wang C, et al. Decentralized adaptive neural approximated inverse control for a class of large-scale nonlinear hysteretic systems with time delays. IEEE Trans Syst Man Cybern Syst. 2018;49:2424–37.

    Article  Google Scholar 

  103. Wu T, Cao J, **ong L, Zhang H. New stabilization results for semi-Markov chaotic systems with fuzzy sampled-data control. Complexity. 2019.

  104. Wang X-F, Gao P, Liu Y-F, Li H-F, Lu F. Predicting Thermophilic Proteins by Machine Learning. Curr Bioinform. 2020;15:493–502.

    CAS  Google Scholar 

  105. Saghafi H, Arabloo M. Modeling of CO 2 solubility in MEA, DEA, TEA, and MDEA aqueous solutions using adaboost-decision tree and artificial neural network. Int J Greenh Gas Control. 2017;58:256–65.

    Article  CAS  Google Scholar 

  106. Ghiasi MM. Development of coordinated methodologies for modeling CO2-containing systems in petroleum industry. 2018;

  107. Chan V, Chan C. Learning from a carbon dioxide capture system dataset: Application of the piecewise neural network algorithm. Petroleum. 2017;3:56–67.

    Article  Google Scholar 

  108. Li T, Xu M, Zhu C, Yang R, Wang Z, Guan Z. A deep learning approach for multi-frame in-loop filter of HEVC. IEEE Trans Image Process . 2019;28:5663–78.

    Article  PubMed  Google Scholar 

  109. Qian J, Feng S, Tao T, Hu Y, Li Y, Chen Q, et al. Deep-learning-enabled geometric constraints and phase unwrap** for single-shot absolute 3D shape measurement. APL Photonics. 2020;5:46105.

    Article  Google Scholar 

  110. Luo M, Liang Z, Liu C, Qi X, Chen M, Sagar RU, Yang H, Liang T. Single–atom manganese and nitrogen co-doped graphene as low-cost catalysts for the efficient CO oxidation at room temperature. Applied Surface Science. 2021;536:

    Article  CAS  Google Scholar 

  111. Xu M, Li T, Wang Z, Deng X, Yang R, Guan Z. Reducing complexity of HEVC: a deep learning approach. IEEE Trans Image Process. 2018;27:5044–59.

    Article  Google Scholar 

  112. Qiu T, Shi X, Wang J, Li Y, Qu S, Cheng Q, et al. Deep learning: A rapid and efficient route to automatic metasurface design. Adv Sci. 2019;6:1900128.

    Article  Google Scholar 

  113. Lv Z, Qiao L. Deep belief network and linear perceptron based cognitive computing for collaborative robots. Appl Soft Comput. 2020;92:106300.

    Article  Google Scholar 

  114. Yang J, Li S, Wang Z, Dong H, Wang J, Tang S. Using Deep Learning to Detect Defects in Manufacturing: A Comprehensive Survey and Current Challenges. Materials (Basel). 2020;13:5755.

    Article  CAS  Google Scholar 

  115. Afkhamipour M, Mofarahi M. Modeling and optimization of CO2 capture using 4-diethylamino-2-butanol (DEAB) solution. Int J Greenh Gas Control. 2016;49:24–33.

    Article  CAS  Google Scholar 

  116. Alkanhal TA. Comprehensive investigation of reduced graphene oxide (rGO) in the base fluid: thermal analysis and ANN modeling. Journal of Thermal Analysis and Calorimetry. 2021;5:1.

    Google Scholar 

  117. Cao B, Zhao J, Gu Y, Ling Y, Ma X. Applying graph-based differential grou** for multiobjective large-scale optimization. Swarm Evol Comput. 2020;53:100626.

    Article  Google Scholar 

  118. Komeilibirjandi A, Raffiee AH, Maleki A, Nazari MA, Shadloo MS. Thermal conductivity prediction of nanofluids containing CuO nanoparticles by using correlation and artificial neural network. J Therm Anal Calorim. 2019;139:1–11.

    Google Scholar 

  119. Fu X, Fortino G, Li W, Pace P, Yang Y. WSNs-assisted opportunistic network for low-latency message forwarding in sparse settings. Futur Gener Comput Syst. 2019;91:223–37.

    Article  Google Scholar 

  120. Shadloo MS, Rahmat A, Karimipour A, Wongwises S. Estimation of pressure drop of two-phase flow in horizontal long pipes using artificial neural networks. J Energy Resour Technol. 2020;142:112110.

    Article  Google Scholar 

  121. Cybenko G. Approximation by superpositions of a sigmoidal function. Math Control Signals Syst. 1989;2:303–14.

    Article  Google Scholar 

  122. Zheng Y, Shadloo MS, Nasiri H, Maleki A, Karimipour A, Tlili I. Prediction of viscosity of biodiesel blends using various artificial model and comparison with empirical correlations. Renew Energy. 2020;153:1296.

    Article  CAS  Google Scholar 

  123. Ghalandari M, Shahrestani MI, Maleki A, Shadloo MS, Assad MEH (2021) Applications of intelligent methods in various types of heat exchangers: a review. J Therm Anal Calorim 1–12.

  124. Ma H-J, Xu L-X, Yang G-H. Multiple environment integral reinforcement learning-based fault-tolerant control for affine nonlinear systems. IEEE Trans Cybern. 2019;51:1913.

    Article  Google Scholar 

  125. Li B, Liu Y, Zhang A, Wang W, Wan S. A Survey on Blocking Technology of Entity Resolution. Journal of Computer Science and Technology. 2020;35(4):769–93.

    Article  Google Scholar 

  126. Shi K, Tang Y, Liu X, Zhong S. Secondary delay-partition approach on robust performance analysis for uncertain time-varying Lurie nonlinear control system. Optim Control Appl Methods. 2017;38:1208–26.

    Article  Google Scholar 

  127. Zenggang X, Zhiwen T, **aowen C, Xue-min Z, Kaibin Z, Conghuan Y. Research on image retrieval algorithm based on combination of color and shape features. J Signal Process Syst. 2019;93:139.

    Article  Google Scholar 

  128. Wang B, Zhang BF, Liu XW, Zou FC. Novel infrared image enhancement optimization algorithm combined with DFOCS. Optik (Stuttg). 2020;224:165476.

    Article  Google Scholar 

  129. Liu J, Wu C, Wu G, Wang X. A novel differential search algorithm and applications for structure design. Appl Math Comput. 2015;268:246–69.

    Google Scholar 

  130. **ong Z, **ao N, Xu F, Zhang X, Xu Q, Zhang K, et al. An equivalent exchange based data forwarding incentive scheme for socially aware networks. J Signal Process Syst. 2020;93:1–15.

    Google Scholar 

  131. Bishop CM. Pattern recognition and machine learning. Berlin: Springer; 2006.

    Google Scholar 

  132. Sipöcz N, Tobiesen FA, Assadi M. The use of artificial neural network models for CO2 capture plants. Appl Energy. 2011;88:2368–76.

    Article  Google Scholar 

  133. FA T. Modelling and experimental study of CO2 absorption and desorption. PhD thesis, Nor Univ Sci Technol. 2006;

  134. Vo ND, Oh DH, Hong SH, Oh M, Lee CH. Combined approach using mathematical modelling and artificial neural network for chemical industries: Steam methane reformer. Applied Energy. 2019;255:

    Article  CAS  Google Scholar 

  135. Cao B, Zhao J, Yang P, Gu Y, Muhammad K, Rodrigues JJPC, et al. Multiobjective 3-D topology optimization of next-generation wireless data center network. IEEE Trans Ind Informatics. 2019;16:3597–605.

    Article  Google Scholar 

  136. Chen Y, Li J, Lu H, Yan P. Coupling system dynamics analysis and risk aversion programming for optimizing the mixed noise-driven shale gas-water supply chains. J Clean Prod. 2021;278:123209.

    Article  Google Scholar 

  137. Cao B, Zhao J, Gu Y, Fan S, Yang P. Security-aware industrial wireless sensor network deployment optimization. IEEE Trans Ind Informatics . 2019;16:5309–16.

    Article  Google Scholar 

  138. Zuo C, Chen Q, Gu G, Feng S, Feng F, Li R, et al. High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection. Opt Lasers Eng . 2013;51:953–60.

    Article  Google Scholar 

  139. Zhou Q, Wu Y, Chan CW, Tontiwachwuthikul P. From neural network to neuro-fuzzy modeling: Applications to the carbon dioxide capture process. Energy Procedia. 2011;4:2066–73.

    Article  Google Scholar 

  140. Cao B, Dong W, Lv Z, Gu Y, Singh S, Kumar P. Hybrid microgrid many-objective sizing optimization with fuzzy decision. IEEE Trans Fuzzy Syst IEEE. 2020;28:2702–10.

    Article  Google Scholar 

  141. Yue H, Wang H, Chen H, Cai K, ** Y. Automatic detection of feather defects using Lie group and fuzzy Fisher criterion for shuttlecock production. Mech Syst Signal Process. 2020;141:106690.

    Article  Google Scholar 

  142. Jang J-SR. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern. 1993;23:665–85.

    Article  Google Scholar 

  143. Jang J-SR, Chuen-Tsai S. Neuro-fuzzy modeling and control. Proc IEEE. 1995;83:378–406.

    Article  Google Scholar 

  144. Yeh F-H, Tsay H-S, Liang S-H (2005) Application of an adaptive-network-based fuzzy inference system for the optimal design of a Chinese Braille display. Biomed Eng Appl Basis Commun. 17:50–60.

  145. Jiang Q, Wang G, ** S, Li Y, Wang Y. Predicting human microRNA-disease associations based on support vector machine. Int J Data Min Bioinform. 2013;8:282–93.

    Article  PubMed  Google Scholar 

  146. Qu K, Wei L, Zou Q. A review of DNA-binding proteins prediction methods. Curr Bioinform. 2019;14:246–54.

    Article  CAS  Google Scholar 

  147. Baghban A, Khoshkharam A. Application of LSSVM strategy to estimate asphaltene precipitation during different production processes. Pet Sci Technol. 2016;34:1855–60.

    Article  CAS  Google Scholar 

  148. Saghafi H, Ghiasi MM, Mohammadi AH. CO2 capture with aqueous solution of sodium glycinate: modeling using an ensemble method. Int J Greenh Gas Control. 2017;62:23–30.

    Article  CAS  Google Scholar 

  149. Ghiasi MM, Yarveicy H, Arabloo M, Mohammadi AH, Behbahani RM. Modeling of stability conditions of natural gas clathrate hydrates using least squares support vector machine approach. J Mol Liq. 2016;223:1081–92.

    Article  CAS  Google Scholar 

  150. Yarveicy H, Moghaddam AK, Ghiasi MM. Practical use of statistical learning theory for modeling freezing point depression of electrolyte solutions: LSSVM model. J Nat Gas Sci Eng. 2014;20:414–21.

    Article  CAS  Google Scholar 

  151. Fanchi, John R; Fanchi CJ. Energy in the 21st century. World Sci Publ Co Inc. 2016;350.

  152. Introduction to Carbon Capture and Storage - Carbon storage and ocean acidification activity. Commonw Sci Ind Res Organ Glob CCS Inst. 2013;

  153. Yarveicy H, Ghiasi MM, Mohammadi AH. Performance evaluation of the machine learning approaches in modeling of CO 2 equilibrium absorption in Piperazine aqueous solution. J Mol Liq. 2018;255:375–83.

    Article  CAS  Google Scholar 

  154. Kianpour M, Sobati MA, Shahhosseini S. Experimental and modeling of CO2 capture by dry sodium hydroxide carbonation. Chem Eng Res Des. 2012;90:2041–50.

    Article  CAS  Google Scholar 

  155. Liu H, Chan C, Tontiwachwuthikul P, Idem R. Analysis of CO2 equilibrium solubility of seven tertiary amine solvents using thermodynamic and ANN models. Fuel. 2019;249:61–72.

    Article  CAS  Google Scholar 

  156. Nwaoha C, Odoh K, Ikpatt E, Orji R, Idem R. Process simulation, parametric sensitivity analysis and ANFIS modeling of CO2 capture from natural gas using aqueous MDEA–PZ blend solution. J Environ Chem Eng. 2017;5:5588–98.

    Article  CAS  Google Scholar 

  157. Saghafi H, Arabloo M. Estimation of carbon dioxide equilibrium adsorption isotherms using adaptive neuro-fuzzy inference systems (ANFIS) and regression models. Environ Prog Sustain Energy. 2017;36:1374–82.

    Article  CAS  Google Scholar 

  158. Wu X, Shen J, Wang M, Lee KY. Intelligent predictive control of large-scale solvent-based CO2 capture plant using artificial neural network and particle swarm optimization. Energy. 2020;196:117070.

    Article  CAS  Google Scholar 

  159. Meisen A, Shuai X. Research and development issues in CO2 capture. Energy Convers Manag. 1997;38:S37-42.

    Article  CAS  Google Scholar 

  160. Wong S BR. Carbon dioxide separation technologies. Carbon energy Manag Edmont Canada Alberta Res Counc. 2002;

  161. Luis P, Van Gerven T, Van der Bruggen B. Recent developments in membrane-based technologies for CO2 capture. Prog Energy Combust Sci. 2012;38:419–48.

    Article  CAS  Google Scholar 

  162. Mondal MK, Balsora HK, Varshney P. Progress and trends in CO2 capture/separation technologies: A review. Energy. 2012;46:431–41.

    Article  CAS  Google Scholar 

  163. Hussain A, Hägg M-B. A feasibility study of CO2 capture from flue gas by a facilitated transport membrane. J Memb Sci. 2010;359:140–8.

    Article  CAS  Google Scholar 

  164. Dashti H, Zhehao Yew L, Lou X. Recent advances in gas hydrate-based CO2 capture. J Nat Gas Sci Eng. 2015;23:195–207.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This article was supported by the Key Research Institute of Humanities and Social Sciences at Universities of Henan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lulu Cao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, L. Application of artificial intelligence on the CO2 capture: a review. J Therm Anal Calorim 145, 1751–1768 (2021). https://doi.org/10.1007/s10973-021-10777-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10777-4

Keywords

Navigation