Log in

Thermogravimetric investigation on co-combustion characteristics and kinetics of antibiotic filter residue and vegetal biomass

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Antibiotic filter residue (AFR) is a typical deep-utilized biomass waste residue with high yield, which is difficult to burn be individually utilized as fuel due to its poor combustion characteristics. The co-combustion of AFR with vegetal biomass is likely to be an effective approach to enhance the combustion performance of AFR, while the co-firing mechanism and kinetics have yet to be fully understood. The present study aimed to investigate the co-combustion characteristics and kinetics of antibiotic filter residue and vegetal biomass (forestall biomass and agricultural biomass) by thermogravimetric experiments and kinetics analysis. The experimental results showed that the co-firing of AFR with peanut shell and poplar improved the combustion characteristics of AFR. Kinetic analysis indicated that the optimal solid-phase reaction models of the blend combustion were diffusion models. The specific form of the reaction function varied with the type and mass fraction of the blends. The present study can provide an improved understanding of the clean and efficient utilization of antibiotic filter residue by co-combustion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Su M, Chen C, Yang Z. Urban energy structure optimization at the sector scale: considering environmental impact based on life cycle assessment. J Clean Prod. 2016;112:1464–74.

    Google Scholar 

  2. Munawer ME. Human health and environmental impacts of coal combustion and post-combustion wastes. J Sustain Min. 2018;17(2):87–96.

    Google Scholar 

  3. Yao H, He B, Ding G, Tong W, Kuang Y. Thermogravimetric analyses of oxy-fuel co-combustion of semi-coke and bituminous coal. Appl Therm Eng. 2019;156:708–21.

    CAS  Google Scholar 

  4. Niu YQ, Lv Y, Lei Y, Liu SQ, Liang Y, Wang DH, et al. Biomass torrefaction: properties, applications, challenges, and economy. Renew Sust Energy Rev. 2019;115:UNSP 109395.

    Google Scholar 

  5. Yao XW, Zhou HD, Xu KL, Xu QW, Li L. Investigation on the fusion characterization and melting kinetics of ashes from co-firing of anthracite and pine sawdust. Renew Energy. 2020;145:835–46.

    CAS  Google Scholar 

  6. Heidari M, Dutta A, Acharya B, Mahmud S. A review of the current knowledge and challenges of hydrothermal carbonization for biomass conversion. J Energy Inst. 2019;92(6):1779–99.

    CAS  Google Scholar 

  7. Smajevic I, Kazagic A. Development, significance and possibilities of application cofiring of coal with biomass in thermal power plant in BOSNIA and Herzegovina. In: Karabegovic I, editor. New technologies, development and application II. Lecture notes in networks and systems. Cham: Springer; 2020. p. 461–7.

    Google Scholar 

  8. Smith JS, Safferman SI, Saffron CM. Development and application of a decision support tool for biomass co-firing in existing coal-fired power plants. J Clean Prod. 2019;236:UNSP 117375.

    Google Scholar 

  9. Agbor E, Zhang X, Kumar A. A review of biomass co-firing in North America. Renew Sust Energy Rev. 2014;40:930–43.

    CAS  Google Scholar 

  10. Robinson AL, Junker H, Baxter LL. Pilot-scale investigation of the influence of coal-biomass cofiring on ash deposition. Energy Fuels. 2002;16(2):343–55.

    CAS  Google Scholar 

  11. Chowdhury MSR, Azad AK, Karim MR, Naser J, Bhuiyan AA. Reduction of GHG emissions by utilizing biomass co-firing in a swirl-stabilized furnace. Renew Energy. 2019;143:1201–9.

    CAS  Google Scholar 

  12. Bhuiyan AA, Blicblau AS, Islam AKMS, Naser J. A review on thermo-chemical characteristics of coal/biomass co-firing in industrial furnace. J Energy Inst. 2018;91(1):1–18.

    CAS  Google Scholar 

  13. **n SZ, Huang F, Liu XY, Mi T, Xu QL. Torrefaction of herbal medicine wastes: characterization of the physicochemical properties and combustion behaviors. Bioresour Technol. 2019;287:7.

    Google Scholar 

  14. Zhuang X, Zhan H, Huang Y, Song Y, Yin X, Wu C. Influence of hydrothermal upgrading on the fuel characteristics and combustion behavior of herb wastes. J Fuel Chem Technol. 2018;46(8):940–9.

    CAS  Google Scholar 

  15. **n S, Huang F, Liu X, Xu Q, Mi T. Pyrolysis and combustion characteristics and kinetics of torrefied traditional Chinese medicine waste. CIESC. 2019;70(8):3142–50.

    CAS  Google Scholar 

  16. Liu B, Jiang X, Lu G, Wang F, Chi Y, Yan J. Thermal dynamics model analysis of combustion and evolved gas analysis of dregs/coal disposal. J Combust Sci Technol. 2015;21(2):150–6.

    CAS  Google Scholar 

  17. Ma LY, Wang DM, **n HH, Qi XY, Dou GL. The competitive reaction mechanism between oxidation and pyrolysis consumption during low-rank coal combustion at lean-oxygen conditions: a quantitative calculation based on thermogravimetric analyses. Can J Chem Eng. 2018;96(12):2575–85.

    CAS  Google Scholar 

  18. Kok MV, Varfolomeev MA, Nurgaliev DK. Isoconversional methods to determine the kinetics of crude oils—thermogravimetry approach. J Pet Sci Eng. 2018;167:480–5.

    CAS  Google Scholar 

  19. Kok MV, Pokol G, Keskin C, Madarasz J, Bagci S. Combustion characteristics of lignite and oil shale samples by thermal analysis techniques. J Therm Anal Calorim. 2004;76(1):247–54.

    Google Scholar 

  20. **n HH, Wang DM, Qi XY, Zhong XX, Ma LY, Dou GL, et al. Oxygen consumption and chemisorption in low-temperature oxidation of sub-bituminous pulverized coal. Spectr Lett. 2018;51(2):104–11.

    CAS  Google Scholar 

  21. Simon P. Isoconversional methods—fundamentals, meaning and application. J Therm Anal Calorim. 2004;76(1):123–32.

    CAS  Google Scholar 

  22. Kim HS, Yang HS, Kim HJ, Park HJ. Thermogravimetric analysis of rice husk flour filled thermoplastic polymer composites. J Therm Anal Calorim. 2004;76(2):395–404.

    CAS  Google Scholar 

  23. Wang CA, Zhang YH, Wang PQ, Zhang JP, Du YB, Che DF. Effects of silicoaluminate oxide and coal blending on combustion behaviors and kinetics of Zhundong coal under oxy-fuel condition. J Therm Anal Calorim. 2018;134(3):1975–86.

    CAS  Google Scholar 

  24. Wang CA, Zhang XM, Liu YH, Che DF. Pyrolysis and combustion characteristics of coals in oxyfuel combustion. Appl Energy. 2012;97:264–73.

    CAS  Google Scholar 

  25. Pu G, Lei Q, Xu P. Thermogravimetric study on combustion and kinetic characteristics of artificial-plates. Chin J Environ Eng. 2012;6(7):2431–6.

    CAS  Google Scholar 

  26. Raveendran K, Ganesh A, Khilar KC. Pyrolysis characteristics of biomass and biomass components. Fuel. 1996;75(8):987–98.

    CAS  Google Scholar 

  27. Beesley L, Moreno-Jimenez E, Gomez-Eyles JL, Harris E, Robinson B, Sizmur T. A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ Pollut. 2011;159(12):3269–82.

    CAS  PubMed  Google Scholar 

  28. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(11):1881.

    CAS  Google Scholar 

  29. Flynn JH, Wall LA. A quick direct method for determination of activation energy from thermogravimetric data. J Polym Sci Part B-Polym Lett. 1966;4(5PB):323.

    CAS  Google Scholar 

  30. Ma ZQ, Chen DY, Gu J, Bao BF, Zhang QS. Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA-FTIR and model-free integral methods. Energy Convers Manage. 2015;89:251–9.

    CAS  Google Scholar 

  31. Aboulkas A, El Harfi K, El Bouadili A. Thermal degradation behaviors of polyethylene and polypropylene. Part I: pyrolysis kinetics and mechanisms. Energy Convers Manage. 2010;51(7):1363–9.

    CAS  Google Scholar 

  32. Wang CA, Liu YH, Zhang XM, Che DF. A study on coal properties and combustion characteristics of blended coals in Northwestern China. Energy Fuels. 2011;25(8):3634–45.

    CAS  Google Scholar 

  33. Wang CA, Liu YH, ** X, Che DF. Effect of water washing on reactivities and NOx emission of Zhundong coals. J Energy Inst. 2016;89(4):636–47.

    CAS  Google Scholar 

  34. Jayaraman K, Kok MV, Gokalp I. Combustion properties and kinetics of different biomass samples using TG-MS technique. J Therm Anal Calorim. 2017;127(2):1361–70.

    CAS  Google Scholar 

  35. Kok MV, Ozgur E. Thermal analysis and kinetics of biomass samples. Fuel Process Technol. 2013;106:739–43.

    CAS  Google Scholar 

  36. Ren X, Chen J, Li G, Wang Y, Lang X, Fan S. Thermal oxidative degradation kinetics of agricultural residues using distributed activation energy model and global kinetic model. Bioresour Technol. 2018;261:403–11.

    CAS  PubMed  Google Scholar 

  37. Jiang G, Wei L, Teng H, Hao H. A kinetic model based on TGA data for pyrolysis of Zhundong coal. CIESC. 2017;68(4):1415–22.

    CAS  Google Scholar 

  38. Yuan H, Liu R, Jiang H, Hao Y. Kinetic study of sunflower seed husk pyrolysis. Trans Chin Soc Agric Eng. 2006;22(4):220–3.

    Google Scholar 

  39. Li X, Lin Q. Maximum probability mechanisms of pyrolysis of corn stalk. CIESC. 2012;63(8):2599–605.

    CAS  Google Scholar 

  40. Zhang JJ, Ren N. A new kinetic method of processing TA data. Chin J Chem. 2004;22(12):1459–62.

    CAS  Google Scholar 

  41. Popescu C. Integral method to analyze the kinetics of heterogeneous reactions under non-isothermal conditions—a variant on the Ozawa–Flynn–Wall method. Thermochim Acta. 1996;285(2):309–23.

    CAS  Google Scholar 

  42. Bohn MA. Problems and faulty uses with the Prout–Tompkins description of autocatalytic reactions and the solutions. J Therm Anal Calorim. 2014;116(2):1061–72.

    CAS  Google Scholar 

  43. Niu SB, Chen M, Li Y, Song J. Co-combustion characteristics of municipal sewage sludge and bituminous coal. J Therm Anal Calorim. 2018;131(2):1821–34.

    CAS  Google Scholar 

  44. Zhang J, Xue BB, Rao GN, Chen LP, Chen WH. Thermal decomposition characteristic and kinetics of DINA. J Therm Anal Calorim. 2018;133(1):727–35.

    CAS  Google Scholar 

  45. Li D, Chen L, Yi X, Zhang X, Ye N. Pyrolytic characteristics and kinetics of two brown algae and sodium alginate. Bioresour Technol. 2010;101(18):7131–6.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledged the financial support from the China Postdoctoral Science Foundation (2019T120286), the State Key Laboratory of Pollution Control and Resource Reuse Foundation (PCRRF18009), and the Natural Science Basic Research Plan in Shaanxi Province of China (2019JM-067).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang’an Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., **, L., Wang, Y. et al. Thermogravimetric investigation on co-combustion characteristics and kinetics of antibiotic filter residue and vegetal biomass. J Therm Anal Calorim 147, 925–938 (2022). https://doi.org/10.1007/s10973-020-10280-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10280-2

Keywords

Navigation