Log in

Effects of torrefaction on slow pyrolysis of the sorghum straw pellets: a kinetic modeling study

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The slow pyrolysis of pretreated sorghum straw pellets (torrefied at 503, 533, 553 and 573 K) was investigated. The product yields of the torrefaction and slow pyrolysis and the total product yields of the two steps were measured separately. The results suggested that the increase in torrefaction temperature increased the carbon content and calorific value and decreased the hydrogen and oxygen content of the solid products. Compared to the raw sorghum straw pellets, the total yield of the gases obtained from slow pyrolysis of the torrefied sorghum straw decreased, while the char yield did not change significantly. It is demonstrated that torrefaction had little effect on the char yield of the biomass slow pyrolysis. The results of ultimate analysis showed that the carbon content (C) in bio-oil produced from torrefied sorghum straw pellets increased with the increased torrefaction temperature, while the oxygen (O) and hydrogen content (H) in bio-oil decreased. Based on the results of ultimate analysis and mass conservation calculation, a simplified one-step chemical equation was developed for the slow pyrolysis of raw and torrefied sorghum straw, and the stoichiometric coefficients of the equation were calculated by elemental balance and mass conservation. A two-step kinetic model was proposed for the pyrolysis of biomass, the apparent activation energy, the pre-exponential factor and the exponents of the two reaction models increased with the increased torrefaction temperature. The apparent activation energy and pre-exponential factor of the reaction increased proportionally with the increased C/O ratio of the reactants. The combination of the one-step chemical equation and the two-step kinetic model can effectively describe the volatiles release behavior of biomass pyrolysis and can be used to predict the relative yield of char, bio-oil and some major gas species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Torrefaction BP, editor. Biomass gasification, pyrolysis and torrefaction. 3rd ed. London: Academic press; 2018. p. 93–154.

    Google Scholar 

  2. Wang NT, Zhan H, Zhuang XZ, Xu B, Yin XL, Wang XM. Torrefaction of waste wood-based panels: more understanding from the combination of upgrading and denitrogenation properties. Fuel Process Technol. 2020;206:106462.

    CAS  Google Scholar 

  3. Stelt MJ, Gerhauser H, Kiel JH, Ptasinski KJ. Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass Bioenergy. 2011;35:3748–62.

    Google Scholar 

  4. Yılgın M, Duranay N, Pehlivan D. Torrefaction and combustion behaviour of beech woostepd pellets. J Therm Anal Calorim. 2019;138:819–26.

    Google Scholar 

  5. Rousset P, Macedo L, Commandré JM, Moreira A. Biomass torrefaction under different oxygen concentrations and its effect on the composition of the solid by-product. J Therm Anal Calorim. 2012;96:86–91.

    CAS  Google Scholar 

  6. Negi S, Jaswal G, Dass K, Mazumder K, Elumalai S, Roy JK. Torrefaction: a sustainable method for transforming of agri-wastes to high energy density solids (biocoal). Rev Environ Sci Biol. 2020;19:463–88.

    CAS  Google Scholar 

  7. Ibrahim RH, Darvell LI, Jones JM, Williams A. Physicochemical characterisation of torrefied biomass. J Anal Appl Pyrolysis. 2013;103:21–30.

    CAS  Google Scholar 

  8. Plis A, Michalina KM, Kopczyński M, Łabojko G. Furniture wood waste as a potential renewable energy source. J Therm Anal Calorim. 2016;125:1357–71.

    CAS  Google Scholar 

  9. Yu SH, Park JJ, Kim M, Kim H, Ryu CK, Lee YW, Yang W. Improving energy density and grindability of wood pellets by dry torrefaction. Energy Fuels. 2019;33:8632–9.

    CAS  Google Scholar 

  10. Boateng AA, Mullen CA. Fast pyrolysis of biomass thermally pretreated by torrefaction. J Anal Appl Pyrolysis. 2013;100:95–102.

    CAS  Google Scholar 

  11. Ukaew S, Schoenborn J, Klemetsrud B, Shonnard DR. Effects of torrefaction temperature and acid pretreatment on the yield and quality of fast pyrolysis bio-oil from rice straw. Anal Appl Pyrolysis. 2018;129:112–22.

    CAS  Google Scholar 

  12. Zheng AQ, Zhao ZL, Chang S, Huang Z, He F, Li HB. Effect of torrefaction temperature on product distribution from two-staged pyrolysis of biomass. Energy Fuels. 2012;26:2968–74.

    CAS  Google Scholar 

  13. Xu XW, Tu R, Sun Y, Li ZY, Jiang EC. Influence of biomass pretreatment on upgrading of bio-oil: comparison of dry and hydrothermal torrefaction. Bioresour Technol. 2018;262:261–70.

    CAS  PubMed  Google Scholar 

  14. Babu BV. Biomass pyrolysis: a state-of-the-art review. Biofuels Bioprod Biorefin. 2008;2:393–414.

    CAS  Google Scholar 

  15. Lee YW, Park JJ, Ryu CK, Gang KS, Yang W, Park YK, Jung JH, Seunghun H. Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 °C. Bioresour Technol. 2013;148:196–201.

    CAS  PubMed  Google Scholar 

  16. Edgar AS, Luiz GO, Isabella AS, Bruno FS, Lucélia M, Patrick R, Armando CP. Effect of torrefaction on thermal behavior and fuel properties of Eucalyptus grandis macro-particulates. J Therm Anal Calorim. 2019;138:3645–52.

    Google Scholar 

  17. Fantozzi F, Colantoni S, Bartocci P, Desideri U. Rotary kiln slow pyrolysis for syngas and char production from biomass and waste-part II: introducing product yields in the energy balance. J Eng Gas Turbines Power. 2007;129:908–13.

    CAS  Google Scholar 

  18. Jia CX, Chen JJ, Liang JW, Song SB, Liu KX, Jiang AQ, Wang Q. Pyrolysis characteristics and kinetic analysis of rice husk. J Therm Anal Calorim. 2019;139:577–87.

    Google Scholar 

  19. Gao NB, Quan C, Liu BL. Continuous pyrolysis of sewage sludge in a screw-feeding reactor: products characterization and ecological risk assessment of heavy metals. Energy Fuels. 2017;31:5063–72.

    CAS  Google Scholar 

  20. Van SPJ. Use of detergents in the analysis of fibrous feeds. II. A rapid method for the determination of fiber and lignin. J Assoc Off Anal Chem. 1963;46:829–35.

    Google Scholar 

  21. Brachi P, Miccio F, Miccio M, Ruoppolo G. Torrefaction of tomato peel residues in a fluidized bed of inert particles and a fixed-bed reactor. Energy Fuels. 2016;30:4858–68.

    CAS  Google Scholar 

  22. Kumar A, Wang LJ, Dzenis YA, Jones D, Hanna MA. Thermogravimetric characterization of corn stover as gasification and pyrolysis feedstock. Biomass Bioenergy. 2008;32:460–7.

    CAS  Google Scholar 

  23. Grigiante M, Antolini D. Mass yield as guide parameter of the torrefaction process. An experimental study of the solid fuel properties referred to two types of biomass. Fuel. 2015;153:499–509.

    CAS  Google Scholar 

  24. Carmen B, Colomba DB. A unified mechanism of the combustion reactions of lignocellulosic fuels. Thermochim Acta. 2013;565:58–64.

    Google Scholar 

  25. Melkior T, Jacob S, Gerbaud G, Hediger S, Le PL, Bonnefois L, Bardet M. NMR analysis of the transformation of wood constituents by torrefaction. Fuel. 2012;92:271–80.

    CAS  Google Scholar 

  26. Yang HP, Yan R, Chen HP, Zheng CG, Lee DH, Liang DT. In-depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose and lignin. Energy Fuels. 2006;20:388–93.

    CAS  Google Scholar 

  27. Cao XF, Zhong LX, Peng XW, Sun SN, Li SM, Liu SJ, Sun RC. Comparative study of the pyrolysis of lignocellulose and its major components: characterization and overall distribution of their biochars and volatiles. Bioresour Technol. 2014;155:21–7.

    CAS  PubMed  Google Scholar 

  28. Park JY, Meng JJ, Lim KH, Rojas OJ, Park S. Transformation of lignocellulosic biomass during torrefaction. J Anal Appl Pyrolysis. 2013;100:199–206.

    CAS  Google Scholar 

  29. Shoulaifar TK, DeMartini N, Willför S, Pranovich A, Annika IS, Virtanen TAP, Maunu SL, Verhoeff F, Kiel JHA, Hupa M. Impact of torrefaction on the chemicalstructure of birch wood. Energy Fuels. 2014;28:3863–72.

    Google Scholar 

  30. Yang HP, Yan R, Chen HP, Lee DH, Zheng CG. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007;86:1781–8.

    CAS  Google Scholar 

  31. Shen DK, Gu S, Bridgwater AV. The thermal performance of the polysaccharides extracted from hardwood: cellulose and hemicellulose. Carbohydr Polym. 2010;82:39–45.

    CAS  Google Scholar 

  32. Chew JJ, Doshi V. Recent advances in biomass pretreatment: torrefaction fundamentals and technology. Renew Sustain Energy Rev. 2011;15:4212–22.

    Google Scholar 

  33. Xu CB, Donald J. Upgrading peat to gas and liquid fuels in supercritical water with catalysts. Fuel. 2012;102:16–25.

    CAS  Google Scholar 

  34. Srinivasan V, Adhikari S, Chattanathan SA. Catalytic pyrolysis of torrefied biomass for hydrocarbons production. Energy Fuels. 2012;26:7347–53.

    CAS  Google Scholar 

  35. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    CAS  Google Scholar 

  36. Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, Opfermann J, Strey R, Anderson HL, Kemmler A, Keuleers R, Janssens J, Desseyn HO, Li CR, Tang TB. Computational aspects of kinetic analysis: part A: the ICTAC kinetics project-data, methods and results. Thermochim Acta. 2000;355:125–43.

    CAS  Google Scholar 

  37. Augis JA, Bennett JE. Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method. J Therm Anal. 1978;13:283–92.

    CAS  Google Scholar 

  38. Zhou LM, Zhang GJ, Schurz M, Steffen K, Meyer B. Kinetic study on CO2 gasification of brown coal and biomass chars: reaction order. Fuel. 2016;173:311–9.

    CAS  Google Scholar 

  39. Lua AC, Su J. Isothermal and non-isothermal pyrolysis kinetics of Kapton polyimide. Polym Degrad Stab. 2006;91:144–53.

    CAS  Google Scholar 

  40. Nobuyoshi K. A review of the mutual dependence of Arrhenius parameters evaluated by the thermoanalytical study of solid-state reactions: the kinetic compensation effect. Thermochim Acta. 1994;244:1–20.

    Google Scholar 

  41. Lesnikovich AI, Levchik SV. Isoparametric kinetic relations for chemical transformations in condensed substances (analytical survey). II. Reactions involving the participation of solid substances. J Therm Anal. 1985;30:677–702.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Zonglu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xuanzuo, L., Zonglu, Y., Lixin, Z. et al. Effects of torrefaction on slow pyrolysis of the sorghum straw pellets: a kinetic modeling study. J Therm Anal Calorim 147, 891–904 (2022). https://doi.org/10.1007/s10973-020-10265-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10265-1

Keywords

Navigation