Log in

Numerical modeling of a hybrid PCM-based wall for energy usage reduction in the warmest and coldest months

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, the effects of using hybrid PCM inside the wall on reducing heat transfer have been examined during the hottest (July) and coldest months (January) in three climate zones. The base wall thickness was 20 cm, and PCM-based wall thickness was considered to be 22 cm. The PCM was placed in two separate layers of 1 cm within the wall. The objective function was to diminish the heat transfer from the PCM-base wall, as compared to the base wall. In all three climatic zones, in warm and cold months, PCM loading into the wall leads to heat transfer reduction. Based on numerical results, in climate zones A (hot summer and mild winter), B (mild summer and very cold winter) and C (warm summer and cold winter) owing to using hybrid PCM layers, heat transfer diminished by 26.9%, 29.65% and 30.5%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Administration EI, Office GP. International Energy Outlook 2016, with Projections to 2040. Government Printing Office; 2016.

  2. Yan S-R, Fazilati MA, Samani N, Ghasemi HR, Toghraie D, Nguyen Q, et al. Energy efficiency optimization of the waste heat recovery system with embedded phase change materials in greenhouses: a thermo-economic-environmental study. J Energy Storage. 2020;30:101445. https://doi.org/10.1016/j.est.2020.101445.

    Article  Google Scholar 

  3. Li ZX, Al-Rashed AAAA, Rostamzadeh M, Kalbasi R, Shahsavar A, Afrand M. Heat transfer reduction in buildings by embedding phase change material in multi-layer walls: effects of repositioning, thermophysical properties and thickness of PCM. Energy Convers Manag. 2019;195:43–56. https://doi.org/10.1016/j.enconman.2019.04.075.

    Article  CAS  Google Scholar 

  4. Ebadi S, Tasnim SH, Aliabadi AA, Mahmud S. An experimental investigation of the charging process of thermal energy storage system filled with PCM and metal wire mesh. Appl Therm Eng. 2020;174:115266. https://doi.org/10.1016/j.applthermaleng.2020.115266.

    Article  CAS  Google Scholar 

  5. Kalbasi R, Afrand M, Alsarraf J, Tran M-D. Studies on optimum fins number in PCM-based heat sinks. Energy. 2019;171:1088–99. https://doi.org/10.1016/j.energy.2019.01.070.

    Article  Google Scholar 

  6. da Cunha SRL, de Aguiar JLB. Phase change materials and energy efficiency of buildings: a review of knowledge. J Energy Storage. 2020;27:101083. https://doi.org/10.1016/j.est.2019.101083.

    Article  Google Scholar 

  7. Khudhair AM, Farid MM. A review on energy conservation in building applications with thermal storage by latent heat using phase change materials. Energy Convers Manag. 2004;45(2):263–75.

    Article  CAS  Google Scholar 

  8. Barzin R, Chen JJJ, Young BR, Farid MM. Application of PCM energy storage in combination with night ventilation for space cooling. Appl Energy. 2015;158:412–21. https://doi.org/10.1016/j.apenergy.2015.08.088.

    Article  Google Scholar 

  9. Gounni A, El Alami M. The optimal allocation of the PCM within a composite wall for surface temperature and heat flux reduction: an experimental approach. Appl Therm Eng. 2017;127:1488–94. https://doi.org/10.1016/j.applthermaleng.2017.08.168.

    Article  Google Scholar 

  10. Xu T, Chen Q, Zhang Z, Gao X, Huang G. Investigation on the properties of a new type of concrete blocks incorporated with PEG/SiO2 composite phase change material. Build Environ. 2016;104:172–7. https://doi.org/10.1016/j.buildenv.2016.05.003.

    Article  Google Scholar 

  11. Salimpour MR, Kalbasi R, Lorenzini G. Constructal multi-scale structure of PCM-based heat sinks. Contin Mech Thermodyn. 2017;29(2):477–91.

    Article  CAS  Google Scholar 

  12. Irandoost Shahrestani M, Maleki A, Safdari Shadloo M, Tlili I. Numerical investigation of forced convective heat transfer and performance evaluation criterion of Al2O3/water nanofluid flow inside an axisymmetric microchannel. Symmetry. 2020;12(1):120.

    Article  CAS  Google Scholar 

  13. Komeilibirjandi A, Raffiee AH, Maleki A, Alhuyi Nazari M, Safdari ShadlooM. Thermal conductivity prediction of nanofluids containing CuO nanoparticles by using correlation and artificial neural network. J Therm Anal Calorim. 2020;139(4):2679–89. https://doi.org/10.1007/s10973-019-08838-w.

    Article  CAS  Google Scholar 

  14. Zheng Y, Shadloo MS, Nasiri H, Maleki A, Karimipour A, Tlili I. Prediction of viscosity of biodiesel blends using various artificial model and comparison with empirical correlations. Renew Energy. 2020;153:1296–306.

    Article  CAS  Google Scholar 

  15. Yan S-R, Kalbasi R, Nguyen Q, Karimipour A. Rheological behavior of hybrid MWCNTs-TiO2/EG nanofluid: a comprehensive modeling and experimental study. J Mol Liq. 2020. https://doi.org/10.1016/j.molliq.2020.113058.

    Article  Google Scholar 

  16. Yan S-R, Kalbasi R, Nguyen Q, Karimipour A. Sensitivity of adhesive and cohesive intermolecular forces to the incorporation of MWCNTs into liquid paraffin: experimental study and modeling of surface tension. J Mol Liq. 2020. https://doi.org/10.1016/j.molliq.2020.113235.

    Article  Google Scholar 

  17. Tian X-X, Kalbasi R, Qi C, Karimipour A, Huang H-L. Efficacy of hybrid nano-powder presence on the thermal conductivity of the engine oil: an experimental study. Powder Technol. 2020. https://doi.org/10.1016/j.powtec.2020.05.004.

    Article  Google Scholar 

  18. Yang L, Huang J-n, Zhou F. Thermophysical properties and applications of nano-enhanced PCMs: an update review. Energy Convers Manag. 2020;214:112876. https://doi.org/10.1016/j.enconman.2020.112876.

    Article  CAS  Google Scholar 

  19. Chou H-M, Chen C-R, Nguyen V-L. A new design of metal-sheet cool roof using PCM. Energy Build. 2013;57:42–50. https://doi.org/10.1016/j.enbuild.2012.10.030.

    Article  Google Scholar 

  20. Zhou G, Zhang Y, Zhang Q, Lin K, Di H. Performance of a hybrid heating system with thermal storage using shape-stabilized phase-change material plates. Appl Energy. 2007;84(10):1068–77. https://doi.org/10.1016/j.apenergy.2006.09.015.

    Article  Google Scholar 

  21. ** X, Medina MA, Zhang X. On the importance of the location of PCMs in building walls for enhanced thermal performance. Appl Energy. 2013;106:72–8. https://doi.org/10.1016/j.apenergy.2012.12.079.

    Article  Google Scholar 

  22. Liu C, Wu Y, Zhu Y, Li D, Ma L. Experimental investigation of optical and thermal performance of a PCM-glazed unit for building applications. Energy Build. 2018;158:794–800. https://doi.org/10.1016/j.enbuild.2017.10.069.

    Article  Google Scholar 

  23. Zhou D, Eames P. Phase Change Material Wallboard (PCMW) melting temperature optimisation for passive indoor temperature control. Renew Energy. 2019;139:507–14. https://doi.org/10.1016/j.renene.2019.02.109.

    Article  Google Scholar 

  24. Saxena R, Rakshit D, Kaushik SC. Phase change material (PCM) incorporated bricks for energy conservation in composite climate: a sustainable building solution. Sol Energy. 2019;183:276–84. https://doi.org/10.1016/j.solener.2019.03.035.

    Article  Google Scholar 

  25. Bahrar M, Djamai ZI, El Mankibi M, Si Larbi A, Salvia M. Numerical and experimental study on the use of microencapsulated phase change materials (PCMs) in textile reinforced concrete panels for energy storage. Sustain Cities Soc. 2018;41:455–68. https://doi.org/10.1016/j.scs.2018.06.014.

    Article  Google Scholar 

  26. Castell A, Martorell I, Medrano M, Pérez G, Cabeza LF. Experimental study of using PCM in brick constructive solutions for passive cooling. Energy Build. 2010;42(4):534–40. https://doi.org/10.1016/j.enbuild.2009.10.022.

    Article  Google Scholar 

  27. Cunha S, Aguiar JB, Tadeu A. Thermal performance and cost analysis of mortars made with PCM and different binders. Constr Build Mater. 2016;122:637–48. https://doi.org/10.1016/j.conbuildmat.2016.06.114.

    Article  Google Scholar 

  28. Kuznik F, Virgone J, Roux J-J. Energetic efficiency of room wall containing PCM wallboard: a full-scale experimental investigation. Energy Build. 2008;40(2):148–56. https://doi.org/10.1016/j.enbuild.2007.01.022.

    Article  Google Scholar 

  29. Cabeza LF, Castell A, Barreneche C, de Gracia A, Fernández AI. Materials used as PCM in thermal energy storage in buildings: a review. Renew Sustain Energy Rev. 2011;15(3):1675–95. https://doi.org/10.1016/j.rser.2010.11.018.

    Article  CAS  Google Scholar 

  30. Waqas A, Ud DinZ. Phase change material (PCM) storage for free cooling of buildings—a review. Renew Sustain Energy Rev. 2013;18:607–25. https://doi.org/10.1016/j.rser.2012.10.034.

    Article  Google Scholar 

  31. Li J, Mohammadi A, Maleki A. Techno-economic analysis of new integrated system of humid air turbine, organic Rankine cycle, and parabolic trough collector. J Therm Anal Calorim. 2020;139(4):2691–703.

    Article  CAS  Google Scholar 

  32. Maleki A, Elahi M, Assad MEH, Nazari MA, Shadloo MS, Nabipour N. Thermal conductivity modeling of nanofluids with ZnO particles by using approaches based on artificial neural network and MARS. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09373-9.

    Article  Google Scholar 

  33. Wang N, Maleki A, Alhuyi Nazari M, Tlili I, Safdari ShadlooM. Thermal conductivity modeling of nanofluids contain MgO particles by employing different approaches. Symmetry. 2020;12(2):206.

    Article  CAS  Google Scholar 

  34. Tian M-W, Ebadi AG, Jermsittiparsert K, Kadyrov M, Ponomarev A, Javanshir N, et al. Risk-based stochastic scheduling of energy hub system in the presence of heating network and thermal energy management. Appl Therm Eng. 2019;159:113825. https://doi.org/10.1016/j.applthermaleng.2019.113825.

    Article  Google Scholar 

  35. Tian M-W, Yan S-R, Tian X-X, Nojavan S, Jermsittiparsert K. Risk and profit-based bidding and offering strategies for pumped hydro storage in the energy market. J Clean Prod. 2020;256:120715. https://doi.org/10.1016/j.jclepro.2020.120715.

    Article  Google Scholar 

  36. Tian M-W, Yuen H-C, Yan S-R, Huang W-L. The multiple selections of fostering applications of hydrogen energy by integrating economic and industrial evaluation of different regions. Int J Hydrog Energy. 2019;44(56):29390–8. https://doi.org/10.1016/j.ijhydene.2019.07.089.

    Article  CAS  Google Scholar 

  37. Handbook AF. American society of heating, refrigerating and air-conditioning engineers. Inc: Atlanta. 2009.

  38. Tiwari G, Tiwari A. Handbook of solar energy. Berlin: Springer; 2006.

    Google Scholar 

  39. Yeoh GH, Tu J. Chapter 3—Solution methods for multiphase flows. In: Yeoh GH, Tu J, editors. Computational techniques for multiphase flows. 2nd ed. Oxford: Butterworth-Heinemann; 2019. p. 85–226.

    Chapter  Google Scholar 

  40. Pasupathy A, Athanasius L, Velraj R, Seeniraj RV. Experimental investigation and numerical simulation analysis on the thermal performance of a building roof incorporating phase change material (PCM) for thermal management. Appl Therm Eng. 2008;28(5):556–65. https://doi.org/10.1016/j.applthermaleng.2007.04.016.

    Article  Google Scholar 

  41. Kalbasi R, Izadi F, Talebizadehsardari P. Improving performance of AHU using exhaust air potential by applying exergy analysis. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-019-09198-1.

    Article  Google Scholar 

  42. Yari M, Kalbasi R, Talebizadehsardari P. Energetic–exergetic analysis of an air handling unit to reduce energy consumption by a novel creative idea. Int J Numer Methods Heat Fluid Flow. 2019;29(10):3959–75. https://doi.org/10.1108/HFF-09-2018-0524.

    Article  Google Scholar 

  43. Kalbasi R, Shahsavar A, Afrand M. Incorporating novel heat recovery units into an AHU for energy demand reduction-exergy analysis. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09060-4.

    Article  Google Scholar 

  44. Kalbasi R, Shahsavar A, Afrand M. Reducing AHU energy consumption by a new layout of using heat recovery units. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09070-2.

    Article  Google Scholar 

  45. Kalbasi R, Ruhani B, Rostami S. Energetic analysis of an air handling unit combined with enthalpy air-to-air heat exchanger. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09158-9.

    Article  Google Scholar 

  46. Gholipour S, Afrand M, Kalbasi R. Improving the efficiency of vacuum tube collectors using new absorbent tubes arrangement: introducing helical coil and spiral tube adsorbent tubes. Renew Energy. 2020;151:772–81. https://doi.org/10.1016/j.renene.2019.11.068.

    Article  Google Scholar 

  47. Ahmadi Nadooshan A, Kalbasi R, Afrand M. Perforated fins effect on the heat transfer rate from a circular tube by using wind tunnel: an experimental view. Heat Mass Transf. 2018;54(10):3047–57. https://doi.org/10.1007/s00231-018-2333-3.

    Article  CAS  Google Scholar 

  48. Nguyen Q, Naghieh A, Kalbasi R, Akbari M, Karimipour A, Tlili I. Efficacy of incorporating PCMs into the commercial wall on the energy-saving annual thermal analysis. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09713-9.

    Article  Google Scholar 

Download references

Acknowledgements

This research is partially supported by Technical Innovation Project of Hubei Province (No. 2017AAA133) and Hubei Superior and Distinctive Discipline Group of Mechatronics and Automobiles (No. XKQ2018002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Rostami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Du, C., Ahmadi, D. et al. Numerical modeling of a hybrid PCM-based wall for energy usage reduction in the warmest and coldest months. J Therm Anal Calorim 144, 1985–1998 (2021). https://doi.org/10.1007/s10973-020-09861-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09861-y

Keywords

Navigation