Log in

Initial fuel depth effect on the burning characteristics of thin-layer pool fire in a confined enclosure

Bench scale experiment and thermal equilibrium analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This study reveals the effect of the initial fuel depth on the burning characteristics of thin-layer pool fire in a confined enclosure. A thin-layer heptane pool with 10 cm diameter was employed in the cone calorimeter to obtain the fundamental burning characteristics of pool fire in the free burning atmosphere under the initial fuel depths. Then, the different initial liquid depths (from 5 to 30 mm) of heptane pool fires were adopted to explore the burning characteristics in the confined enclosure with a central horizontal opening. Several parameters such as the burning rate, the flame height, the oxygen concentration at extinction time and smoke temperature distribution were investigated. Results show that the burning rate presents the different trends with the increase in the fuel depth in the free burning atmosphere and confined enclosure. The fuel depth presents an influence on the pool fire burning characteristic parameters. Moreover, the theoretical thermal equilibrium analysis in the confined enclosure was also studied to obtain relationship between the combustion coefficient and depth coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Gottuk DT, White DA. Liquid fuel fires. In: Hurley MJ, Gottuk DT, Hughes PE, Hall JR, Harada K, Kuligowski ED, Puchovsky M, Torero JL, Watts JM, Wieczorek CJ, editors. The SFPE handbook of fire protection engineering. 5th ed. Quincy: National Fire Protection Association; 2016. p. 2552–60.

    Chapter  Google Scholar 

  2. Wang C, Guo J, Ding Y, et al. Burning rate of merged pool fire on the hollow square tray. J Hazard Mater. 2015;290:78–86.

    Article  CAS  Google Scholar 

  3. Ni X, Zhang S, Zheng Z, et al. Application of water@ silica core-shell particles for suppressing gasoline pool fires. J Hazard Mater. 2018;341:20–7.

    Article  Google Scholar 

  4. Kong D, Zhang Z, ** P, et al. Experimental study on burning behavior of crude oil pool fire in annular ice cavities. Fuel. 2018;234:464–72.

    Article  CAS  Google Scholar 

  5. Mealy C, Benfer M, Gottuk DT. A study of the parameters influencing liquid fuel burning rates. Fire Saf Sci. 2011;10:945–58.

    Article  Google Scholar 

  6. Hu Y, Zhou X, Wu Z, et al. Ignition and burning behaviors of automobile oil in engine compartment. J Therm Anal Calorim. 2017;132:1–12.

    Google Scholar 

  7. Chen B, Lu S, Li C, et al. Unsteady burning of thin-layer pool fires. J Fire Sci. 2012;30(1):3–15.

    Article  Google Scholar 

  8. Vali A, Nobes DS, Kostiuk LW. Fluid motion and energy transfer within burning liquid fuel pools of various thicknesses. Combust Flame. 2015;162(4):1477–88.

    Article  CAS  Google Scholar 

  9. Zhao J, Huang H, Wang H, et al. Experimental study on burning behaviors and thermal radiative penetration of thin-layer burning. J Therm Anal Calorim. 2017;130(2):1153–62.

    Article  CAS  Google Scholar 

  10. Gottuk D, Scheffey J, Williams F, Gott J, Tabet R. Optical fire detection for military aircraft hangars: final report on OFD performance to fuel spill fires and optical stresses. Washington: Naval Research Laboratory NRL/MR/6180—00-8457; 2001. p. 1–341.

    Google Scholar 

  11. Putorti A. Flammable and combustible liquid spill burn patterns. Washington: National Institute of Justice NIJ-604-00; 2001. p. 1–55.

    Google Scholar 

  12. Chen X, Lu S, Wang X, et al. Pulsation behavior of pool fires in a confined compartment with a horizontal opening. Fire Technol. 2016;52(2):515–31.

    Article  Google Scholar 

  13. He Q, Li C, Lu S, et al. Pool fires in a corner ceiling vented cabin: ghosting flame and corresponding fire parameters. Fire Technol. 2015;51(3):537–52.

    Article  Google Scholar 

  14. He Q, Ezekoye OA, Li C, et al. Ventilation limited extinction of fires in ceiling vented compartments. Int J Heat Mass Transf. 2015;91:570–83.

    Article  CAS  Google Scholar 

  15. Nasr A, Suard S, El-Rabii H et al (2011) Experimental study on pyrolysis of a heptane pool fire in a reduced scale compartment. In: 7th mediterranean combustion symposium.

  16. Hamins AP, Yang JC, Kashiwagi T (1999) Global model for predicting the burning rates of liquid pool fires (NISTIR 6381). NIST Interagency/Internal Report (NISTIR)-6381.

  17. Chen X, Lu S, Li C, Zhang J, Liew KM. Experimental study on ignition and combustion characteristics of typical oils. Fire Mater. 2014;38(3):409–17.

    Article  CAS  Google Scholar 

  18. Babrauskas V. The cone calorimeter. In: Hurley MJ, Gottuk DT, Hughes PE, Hall JR, Harada K, Kuligowski ED, Puchovsky M, Torero JL, Watts JM, Wieczorek CJ, editors. The SFPE handbook of fire protection engineering. 5th ed. Quincy: National Fire Protection Association; 2016. p. 952–70.

    Chapter  Google Scholar 

  19. Kong D, Liu P, Zhang J, et al. Small scale experiment study on the characteristics of boilover. J Loss Prevent Process. 2017;48:101–10.

    Article  Google Scholar 

  20. Arai M, Saito K, Altenkirch RA. A study of boilover in liquid pool fires supported on water part I: effects of a water sublayer on pool fires. Combust Sci Technol. 1990;71(1–3):25–40.

    Article  CAS  Google Scholar 

  21. Chen B, Lu SX, Li CH, et al. Initial fuel temperature effects on burning rate of pool fire. J Hazard Mater. 2011;188(1–3):369–74.

    Article  CAS  Google Scholar 

  22. Chen ZB, Hu LH, Huo R, et al. Flame oscillation frequency based on image correlation. J Combust Sci Technol. 2008;14(4):367–71.

    CAS  Google Scholar 

  23. Tang F, Hu LH, Delichatsios MA, et al. Experimental study on flame height and temperature profile of buoyant window spill plume from an under-ventilated compartment fire. Int J Heat Mass Transf. 2012;55(1–3):93–101.

    Article  CAS  Google Scholar 

  24. Tao C, He Y, Zhuang Y, et al. The investigation of flame length of buoyancy-controlled gas fire bounded by wall and ceiling. Appl Therm Eng. 2017;127:1172–83.

    Article  Google Scholar 

  25. Heskestad G. Fire plumes, flame height, and air entrainments. In: Morgan JH, editor. SFPE handbook of fire protection engineering. 5th ed. New York: Springer; 2016. p. 2016.

    Google Scholar 

  26. Chen X, Lu S, Liew KM. An investigation of horizontal opening effect on pool fire behavior in a confined compartment: a study based on global equivalence ratio. J Fire Sci. 2016;34(1):13–29.

    Article  CAS  Google Scholar 

  27. Zhang JQ (2014) Fire dynamics in ship enclosures considering the effects of ceiling vent and fire locations. Ph.D. Thesis, University of Science and Technology of China, Hefei, China.

  28. Ding Y, Lin F, Lu S, et al. The effect of azeotropic blended fuel on combustion characteristics in a ceiling vented compartment. Fuel. 2017;189:1–7.

    Article  CAS  Google Scholar 

  29. Hamins A, Johnsson E, Donnelly M, et al. Energy balance in a large compartment fire. Fire Saf J. 2008;43(3):180–8.

    Article  Google Scholar 

  30. Quintiere JG. Fundamentals of fire phenomena. Chichester: Wiley; 2006.

    Book  Google Scholar 

  31. Mealy C, Benfer M, Gottuk DT. Fire dynamics and forensic analysis of liquid fuel fires. Columbus: BiblioGov; 2012.

    Google Scholar 

  32. Babrauskas V. Heat release rates. In: Morgan JH, editor. SFPE handbook of fire protection engineering. 5th ed. New York: Springer; 2016. p. 799–904.

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51704268); the China Postdoctoral Science Foundation (No. 2016M592068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **ao Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Lu, S. & Ding, Z. Initial fuel depth effect on the burning characteristics of thin-layer pool fire in a confined enclosure. J Therm Anal Calorim 139, 1409–1418 (2020). https://doi.org/10.1007/s10973-019-08493-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08493-1

Keywords

Navigation