Log in

Studying Cu2–xSe phase transformation through DSC examination

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal effect accompanying the transition of Cu2–xSe into a superionic conduction state was studied by non-isothermal measurements, at different heating and cooling rates (β=1, 2.5, 5, 10 and 20°C min–1). During heating the peak temperature (Tp) remains almost stable for all values of β, (136.8±0.4°C for Cu2Se and 133.0±0.3°C for Cu1.99Se). A gradual shift of the initiation of the transformation towards lower temperatures is observed, as the heating rate increases. During cooling there is a significant shift in the position of the peak maximum (Tp) towards lower temperatures with the increase of the cooling rate. A small hysteresis is observed, which increases with the increase of the cooling rate, β. The mean value of transformation enthalpy was found to be 30.3±0.8 J g–1 for Cu2Se and 28.9±0.9 J g–1 for Cu1.99Se. The transformation can be described kinetically by the model f(ǯ)=(1–ǯ)n(1+kcatX), with activation energy E=175 kJ mol–1, exponent value n equal to 0.2, logA=20 and log(kcat)= 0.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y **e X Zheng X Jiang J Lu L Zhu (2002) Inorg. Chem. 41 387 Occurrence Handle1:CAS:528:DC%2BD3MXptlSqtbc%3D

    CAS  Google Scholar 

  2. Y Jiang B **e J Wu S Yuan Y Wu H Huang Y Qian (2002) J. Solid State Chem. 167 28 Occurrence Handle10.1006/jssc.2002.9610 Occurrence Handle1:CAS:528:DC%2BD38Xntlygsrs%3D

    Article  CAS  Google Scholar 

  3. T Ishikawa S Miyatani (1977) Phys. Soc. Japan 42 159 Occurrence Handle1:CAS:528:DyaE2sXhtlWku74%3D

    CAS  Google Scholar 

  4. N Frangis C Manolikas S Amelinckx (1991) Phys. Status Solidi. A 126 9 Occurrence Handle1:CAS:528:DyaK3MXlvFCltb8%3D

    CAS  Google Scholar 

  5. O Milat Z Vucic B Ruscic (1987) Solid State Ionics 23 37 Occurrence Handle10.1016/0167-2738(87)90079-8 Occurrence Handle1:CAS:528:DyaL2sXksV2rurg%3D

    Article  CAS  Google Scholar 

  6. S Kashida J Akai (1988) J. Phys. C 21 5329 Occurrence Handle10.1088/0022-3719/21/31/004 Occurrence Handle1:CAS:528:DyaL1MXmsleitQ%3D%3D

    Article  CAS  Google Scholar 

  7. RD Heyding (1966) Can. J. Chem. 44 1233

    Google Scholar 

  8. SA Danilkin AN Skomorokhov A Hoser H Fuess V Rajevac NN Bickulova (2003) J. Alloys Comp. 361 57 Occurrence Handle10.1016/S0925-8388(03)00439-0 Occurrence Handle1:CAS:528:DC%2BD3sXnvV2jsbw%3D

    Article  CAS  Google Scholar 

  9. NKh Abrikosov VF Bankina MA Korzhuev GK Demenskii OA Teplov (1983) Sov. Phys. Solid State 25 1678

    Google Scholar 

  10. Z Vucic O Milat V Horvatic Z Ogorelec (1981) Phys. Rev. B 24 5398 Occurrence Handle1:CAS:528:DyaL3MXmt12ltr4%3D

    CAS  Google Scholar 

  11. A. R. Ubbelohde in ‘Reactivity of Solids’ Ed., J. H. de Boer (1961).

  12. KJ Rao NR Rao (1966) J. Mater. Sci. 1 238 Occurrence Handle10.1007/BF00550172 Occurrence Handle1:CAS:528:DyaF2sXhsVKmsw%3D%3D

    Article  CAS  Google Scholar 

  13. AK Galwey ME Brown et al. (1998) Handbook of Thermal Analysis and Calorimetry Elsevier Amsterdam

    Google Scholar 

  14. ME Brown M Maciejewski S Vyazovkin (2000) Thermochim. Acta 355 125 Occurrence Handle10.1016/S0040-6031(00)00443-3 Occurrence Handle1:CAS:528:DC%2BD3cXktVSjsr0%3D

    Article  CAS  Google Scholar 

  15. S Vyazovkin C Wight (1999) Thermochim. Acta 340–341 53

    Google Scholar 

  16. H Polli LA Pontes AS Araujo (2005) J. Therm. Anal. Cal. 79 383 Occurrence Handle10.1007/s10973-005-0070-6 Occurrence Handle1:CAS:528:DC%2BD2MXkt1Chs7g%3D

    Article  CAS  Google Scholar 

  17. P Simon (2005) J. Therm. Anal. Cal. 82 651 Occurrence Handle1:CAS:528:DC%2BD28XjsFCqsw%3D%3D

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chrissafis K..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chrissafis, K., Paraskevopoulos, K.M. & Manolikas, C. Studying Cu2–xSe phase transformation through DSC examination. J Therm Anal Calorim 84, 195–199 (2006). https://doi.org/10.1007/s10973-005-7169-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-005-7169-7

Keywords

Navigation