Log in

Structural, phosphorescence, thermal, and dielectric properties of SrAl4O7: Eu3+ nano phosphors

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

SrAl4O7 nano phosphors doped with different weight percentages of europium (1, 3, 5, and 12 wt%) were successfully synthesized using the sol-gel method. The phase purity of the synthesized samples was confirmed by powder X-ray diffraction and the average crystallite size increased with an increase in dopant concentration of europium. The band gap value increases with an increase in the dopant concentrations of europium in SrAl4O7. The decay kinetics and luminescence spectra of materials doped with Eu3+ were strongly concentration-dependent. TG curves show the decomposition of the organic compounds in the precursors together with the evaluation of great amounts of gases and crystallization of SrAl4O7. DSC curves show the breakdown of loosely bound organic molecules, the elimination of water molecules, and other surface dangling bonds responsible for the endothermic peaks. The dielectric constant decreases with an increase in frequency. The outcomes of these investigations made the focused materials worthy of applications in energy storage devices, solar cells, and lighting technology.

Graphical Abstract

Highlights

  • Eu doped SrAl4O7 nano phosphors were successfully synthesized by sol-gel method.

  • Band gap energy increases with an increase in Eu dopant concentrations.

  • 12 wt% of Eu-doped SrAl4O7 nano phosphor shows a decrease in phosphorescence emission intensity due to the quenching effect.

  • Thermal effects on prepared nano phosphors revealed that these materials have high stability and homogeneity.

  • These synthesized nano phosphors can be applied for high-frequency devices or power applications, solar cells, and other energy storage applications due to their low dielectric constants at higher frequencies which results in minimal electric power loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Brito HF, Holsa J, Laamanen T, Lastusaari M, Malkamaki M, Rodrigues LCV (2012) Persistent luminescence mechanisms: human imagination at work. Opt Mater Express 2(4):371. https://doi.org/10.1364/OME.2.000371

    Article  CAS  Google Scholar 

  2. Dutczak D, Jüstel T, Ronda C, Meijerink A (2015) Eu 2+ luminescence in strontium aluminates. Phys Chem Chem Phys 17(23):15236–15249. https://doi.org/10.1039/C5CP01095K

    Article  CAS  PubMed  Google Scholar 

  3. Capron M, Douy A (2002) Strontium aluminate SrAl4O7: synthesis and stability. J Am Ceram Soc 85(12):3036–3040. https://doi.org/10.1111/j.1151-2916.2002.tb00575.x

    Article  CAS  Google Scholar 

  4. Van den Eeckhout K, Smet PF, Poelman D (2010) Persistent luminescence in Eu2+ doped compounds: a review. Materials 3(4):2536–2566. https://doi.org/10.3390/ma3042536

    Article  CAS  PubMed Central  Google Scholar 

  5. Douy A, Capron M (2003) Crystallisation of spray-dried amorphous precursors in the SrO–Al2O3 system: a DSC study. J Eur Ceram Soc 23(12):2075–2081. https://doi.org/10.1016/S0955-2219(03)00015-3

    Article  CAS  Google Scholar 

  6. Lindop AJ, Goodwin DW (1972) The refined structure of SrO. 2Al2O3. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 28:2625–2626. https://doi.org/10.1107/s0567740872006612

    Article  CAS  Google Scholar 

  7. Yuan X, Xu Y, Huang G, Zeng C (2007) Synthesis of strontium aluminate via an ethylenediaminetetraacetic acid precursor. J Am Ceram Soc 90(7):2283–2286. https://doi.org/10.1111/j.1551-2916.2007.01717.x

    Article  CAS  Google Scholar 

  8. Kim D (2021) Recent developments in lanthanide-doped alkaline earth aluminate phosphors with enhanced and long-persistent luminescence. Nanomaterials (Basel) 11:723. https://doi.org/10.3390/nano11030723

    Article  CAS  PubMed  Google Scholar 

  9. Yerpude A, Dhoble SJ, Bukya, Ramesh, Borelli, Deva Prasad R (2015) Photoluminescence and decay properties of Sm3+ And Dy3+ In SrAl4O7 phosphor. Adv Mater Lett 6:1111–1115. https://doi.org/10.5185/amlett.2015.5919

    Article  CAS  Google Scholar 

  10. Giri NK, Singh S, Rai D, Rai S (2010) SrAl4O7:Tm3+/Yb3+ nanocrystalline blue phosphor: Structural, thermal, and optical properties. Appl Phys B: Lasers Opt 99:271–277. https://doi.org/10.1007/s00340-009-3866-4

    Article  CAS  Google Scholar 

  11. Puchalska M, Zych E, Watras A (2016) Cooperative up-conversion processes in SrAl4O7: Yb and SrAl4O7: Yb, Tb and their dependence on charge compensation by Na. J Luminescence 183. https://doi.org/10.1016/j.jlumin.2016.11.022

  12. Cao R, **ong Q, Luo W, Wu D, Fen X, Yu X (2015) Synthesis and luminescence properties of efficient red phosphors SrAl4O7:Mn4+, R+ (R+=Li+, Na+, and K+) for white LEDs. Ceram Int 41(5):7191–7196. https://doi.org/10.1016/j.ceramint.2015.02.047

    Article  CAS  Google Scholar 

  13. Stadnik V, Hreb V, Luchechko A, Zhydachevskyy Y, Suchocki A, Vasylechko L (2021) Sol-gel combustion synthesis, crystal structure and luminescence of Cr3+ and Mn4+ ions in nanocrystalline SrAl4O7. Inorganics 9:89. https://doi.org/10.3390/inorganics9120089

    Article  CAS  Google Scholar 

  14. Sharma SK, Pitale SS, Manzar Malik M, Gundu Rao T, Chawla S, Qureshi M, Dubey R (2010) Spectral and defect analysis of Cu-doped combustion synthesized new SrAl4O7 phosphor. J Lumin 130(2):240–248. https://doi.org/10.1016/J.JLUMIN.2009.08.014

    Article  CAS  Google Scholar 

  15. Puchalska M, Bolek P, Kot K, Zych E (2020) Luminescence of Bi3+ and Bi2+ ions in novel Bi-doped SrAl4O7 phosphor. Opt Mater 107:109999. https://doi.org/10.1016/j.optmat.2020.109999

    Article  CAS  Google Scholar 

  16. Martynas M, Artur H, Rimantas R (2022) Luminescence properties of Tb-doped SrAl4O7. J Solid-State Chem 312:123251. https://doi.org/10.1016/j.jssc.2022.123251. ISSN 0022-4596

    Article  CAS  Google Scholar 

  17. Singh V, Lakshminarayana G, Wagh A (2019) Sol-gel synthesis and fluorescence features of SrAl4O7:Sm3+ phosphors. Optik 204:163908. https://doi.org/10.1016/j.ijleo.2019.163908

    Article  CAS  Google Scholar 

  18. Misevicius M, Balevicius V (2020) Solid-state synthesis of SrAl4O7 and luminescence of Eu3+-doped samples. Mater Chem Phys 249:122998. https://doi.org/10.1016/j.matchemphys.2020.122998

    Article  CAS  Google Scholar 

  19. Puchalska M (2017) High enhancement of Eu3+ luminescence in SrAl4O7 phosphor by means of charge compensation with Na+ ions. Opt Mater 72:452–458. https://doi.org/10.1016/j.optmat.2017.05.045. ISSN 0925-3467

    Article  CAS  Google Scholar 

  20. Puchalska M, Zych E (2018) The effect of charge compensation through alkali metal co-do** on the luminescence behaviour of SrAl4O7:Sm3+ phosphor. J Luminescence 197. https://doi.org/10.1016/j.jlumin.2018.01.047.

  21. Preethi K, Lu C-H, Thirumalai J, Jagannathan R, Natarajan T, Nayak N, Radhakrishna I, Muthurulandi, Trivedi DD (2004) SrAl4O7: Eu2+ nanocrystals: Synthesis and fluorescence properties. J Phys D: Appl Phys 37:2664. https://doi.org/10.1088/0022-3727/37/19/009

    Article  CAS  Google Scholar 

  22. Misevicius M, Pinkas J, Balevicius V (2020) Solid-state synthesis and luminescence of europium doped and co-doped with dysprosium SrAl4O7. J Alloy Compd 820:153110. https://doi.org/10.1016/j.jallcom.2019.153110. ISSN 09258388

    Article  CAS  Google Scholar 

  23. Yerpude AN, Dhoble SJ (2016) Combustion synthesis of rare earth activated and co-activated SrAl4O7 green long-lasting phosphors. Optik 127(10):4217–4221. https://doi.org/10.1016/j.ijleo.2016.01.040. ISSN 0030-4026

    Article  CAS  Google Scholar 

  24. Singh D, Tanwar V, Samantilleke A, Marí S, Bernabé, Bhagwan S, Singh K, Kadyan P, Singh I (2017) Synthesis of Sr(1-x-y) Al4O7: Eux 2+, Lny3+ (Ln = Dy, Y, Pr) nano phosphors using rapid gel combustion process and their down conversion characteristics. Electron Mater Lett 13:222–229. https://doi.org/10.1007/s13391-017-6038-4

    Article  CAS  Google Scholar 

  25. Gedekar K, Wankhede S, Moharil S, Belekar R (2018) Ce3+ and Eu2+ luminescence in calcium and strontium aluminates. J Mater Sci: Mater Electr 29. https://doi.org/10.1007/s10854-017-8394-0.

  26. Singh D, Tanwar V, Simantilleke A, Bhagwan S, Marí S, Bernabé, Kadyan P, Singh K, Singh I (2016) Synthesis and enhanced luminescent characterization of SrAl4O7:Eu2+, RE3+ (RE = Nd, Dy) nano phosphors for light emitting applications. J Mater Sci: Mater Electr 27. https://doi.org/10.1007/s10854-016-4428-2

  27. Daisuke N, Go O, Koshimizu M, Naoki K, Noriaki K, Takayuki Y (2018) Photoluminescence and scintillation properties of Eu-doped strontium aluminate crystals. Nucl Instrum Methods Phys Res Sect B: Beam Interact Mater At 435:273–277. https://doi.org/10.1016/j.nimb.2018.01.007. ISSN 0168-583X

    Article  CAS  Google Scholar 

  28. Jisha VT, Subash TD, Saji Kumar AC, Shyju GJ (2023) Structural, optical and thermal properties of SrAl4O7: Pr Nanophosphors. Mater Today: Proc 80(Part 3):2175–2177. https://doi.org/10.1016/j.matpr.2021.06.158. ISSN 2214-7853

    Article  CAS  Google Scholar 

  29. Lai S, Zhao M, Zhao Y, Molokeev M, Zhiguo X (2022) Eu 2+ do** concentration-induced site-selective occupation and photoluminescence tuning in KSrScSi 2 O 7: Eu 2+ phosphor. ACS Mater Au. 2. https://doi.org/10.1021/acsmaterialsau.1c00081

  30. Ding Y, Niu L Chen Y, Wang M (2023) Study on the defect structure of carbon‐doped ZnO materials. Crystal Res Technol 58. https://doi.org/10.1002/crat.202300015

  31. Singh V, Rao G, Zhu J (2006) Preparation, luminescence, and defect studies of Eu2+-activated strontium hexa-aluminate phosphor prepared via combustion method. J Solid-State Chem 179:2589–2594. https://doi.org/10.1016/j.jssc.2006.04.053

    Article  CAS  Google Scholar 

  32. Wang Z, Luan X, Ma G, Chen J, Liu Y (2021) Dual-emitting phosphor Sr4Al14O25:Eu2+/3+ prepared in air for ratiometric temperature sensing. J Mater Sci: Mater Electr 32. https://doi.org/10.1007/s10854-021-05897-4

  33. Mohanapandian K, Kamala SSP, Periasamy P, Priya NS, Selvakumar B, Senthilkannan K (2021) Cu2+ substituted Cr2O3 nanostructures prepared by microwave-assisted method: an investigation of its structural, morphological, optical, and dielectric properties. J Sol-Gel Sci Technol 99(3):546–556. https://doi.org/10.1007/s10971-021-05596-w

    Article  CAS  Google Scholar 

  34. Gültekin S, Yıldırım S, Yılmaz O, Keskin İÇ, Katı Mİ, Çelik E (2019) Structural and optical properties of SrAl2O4: Eu2+/Dy3+ phosphors synthesized by flame spray pyrolysis technique. J Lumin 206:59–69. https://doi.org/10.1016/j.jlumin.2018.10.011. ISSN 0022-2313

    Article  CAS  Google Scholar 

  35. Singh V, Zhu J-J, Tiwari M, Soni M, Aynayas M, Hyun S-H, Narayanan R, Mohapatra M, Natarajan V (2009) Characterization, luminescence and EPR investigations of Eu2+ activated strontium aluminate phosphor. J Non-Crystalline Solids 355(50–51):2491–2495. https://doi.org/10.1016/j.jnoncrysol.2009.08.027. ISSN 0022-3093

    Article  CAS  Google Scholar 

  36. Rai SB (2017) Frequency upconversion and downshifting emissions in solution combustion derived Yb 3+, Pr 3+ co-doped strontium aluminate nano-phosphor: A multi-modal phosphor. J Lumin 190:171–178. https://doi.org/10.1016/j.jlumin.2017.05.058

    Article  CAS  Google Scholar 

  37. Lv H, Pan Z, Wang Y (2019) Synthesis and mechanoluminescent property of (Eu2+, Dy3+)-co-doped strontium aluminate phosphor by soft mechanochemistry-assisted solid-state method. J Lumin 209:129–140. https://doi.org/10.1016/j.jlumin.2019.01.026. ISSN 0022-2313

    Article  CAS  Google Scholar 

  38. Poulose AM, Anis A, Shaikh H, Alhamidi A, Siva Kumar N, Elnour AY, Al-Zahrani SM (2021) Strontium Aluminate-Based Long Afterglow PP Composites: Phosphorescence, Thermal, and Mechanical Characteristics. Polym (Basel) 13(9 Apr):1373. https://doi.org/10.3390/polym13091373

    Article  CAS  Google Scholar 

  39. Chaware P, Nande A, Dhoble SJ, Rewatkar KG (2021) Structural, photoluminescence, and Judd-Ofelt analysis of red-emitting Eu3+ doped strontium hexa-aluminate nano phosphors for lighting application, Opt Mater 121,111542, ISSN 0925-3467, https://doi.org/10.1016/j.optmat.2021.111542

  40. Wei F, Jia Q (2015) Massive production of A2SiO4:Eu3+ and A2SiO4:Eu2+ (A=Ca, Sr, Ba) microspheres and luminescent properties. Superlattices Microstructures 82:11–17. https://doi.org/10.1016/j.spmi.2015.02.006. ISSN 0749-6036

    Article  CAS  Google Scholar 

  41. Dong C, Zhang Y, Duan J, Yu J (2019) Synthesis and luminescence properties of single-phase Ca2P2O7:Eu2+, Eu3+ phosphor with tunable red/blue emission. J Mater Sci: Mater Electr 30. https://doi.org/10.1007/s10854-019-02011-7.

  42. Ruan W, Zhang R, Zhong Q, Fu Y, Yang Z, **e M. Preparation and wide band emission characteristics of Eu 2+/Eu 3+ Co-Doped Ba 3P 4O 13 phosphors. https://doi.org/10.2139/ssrn.3980028

  43. Kim D, Kim HE, Kim CH (2016) Effect of composition and impurities on the phosphorescence of green-emitting alkaline earth aluminate phosphor. PLoS One 11(1 Jan):e0145434. https://doi.org/10.1371/journal.pone.0145434

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mindru I, Gingasu D, Patron L, Marinescu G, Calderon-Moreno JM, Diamandescu L, Secu M, Oprea O (2017) Tb3+-doped alkaline-earth aluminates: Synthesis, characterization and optical properties. Mater Res Bull 85:240–248. https://doi.org/10.1016/j.materresbull.2016.09.024. ISSN 0025-5408

    Article  CAS  Google Scholar 

  45. Bonturim E, Merízio LG, dos Reis R, Felinto Brito H, Rodrigues LCV, Felinto MCFC (2018) Persistent luminescence of inorganic nano phosphors prepared by wet-chemical synthesis. J Alloy Compd 732:705–715. https://doi.org/10.1016/j.jallcom.2017.10.219. ISSN 0925-8388

    Article  CAS  Google Scholar 

  46. Hiroaki T, Hiraku K, Haruki U, Takuya H, Takaaki T, Kheirreddine L (2020) Strontium-substituted calcium magnesium silicate single crystals for high-temperature piezoelectric applications. J Ceram Soc Jpn 128(3):130–134. https://doi.org/10.2109/jcersj2.19193. Online ISSN 1348-6535, Print ISSN 1882-0743

    Article  CAS  Google Scholar 

  47. Bidwai D, Parauha Y, Sahu M, Dhoble SJ, Swati G (2022) Synthesis and luminescence characterization of aqueous stable Sr3MgSi2O8: Eu2+, Dy3+ long afterglow nano phosphor for low light illumination. J Solid-State Chem 310:123089. https://doi.org/10.1016/j.jssc.2022.123089

    Article  CAS  Google Scholar 

  48. Chang C, Xu J, Jiang L, Mao D, Ying W (2006) Luminescence of long-lasting CaAl2O4:Eu2+, Nd3+ phosphor by co-precipitation method. Mater Chem Phys 98:509–513. https://doi.org/10.1016/j.matchemphys.2005.09.069

    Article  CAS  Google Scholar 

  49. Sutradhar S, Bandyopadhyay A, Debnath T et al. (2019) Effect of hydrothermal synthesis on physical property modulation and biological activity of ZnO nanorods. Mater Res Expr 6:1250–1257. https://doi.org/10.1088/2053-1591/ab4dd0

    Article  CAS  Google Scholar 

  50. Sanad MMS, Rashad M (2016) Tuning the structural, optical, photoluminescence, and dielectric properties of Eu2+-activated mixed strontium aluminate phosphors with different rare earth co-activators. J Mater Sci: Mater Electr 27. https://doi.org/10.1007/s10854-016-4936-0

  51. Sasikumar P et al. (2023) Tunable luminescence and electrical properties of cerium doped strontium aluminate (SrAl2O4: Ce3+) phosphors for white LED applications. Heliyon 9:6. https://doi.org/10.1016/j.heliyon.2023.e17429

    Article  CAS  Google Scholar 

  52. Kim M, Ahmed T, Lee JH, Kim D, Kim HT, Lee G-Y, Yeo D-H, Lee S (2023) Effects of chemical ordering and homogeneity on microwave dielectric properties of LaGaO3-SrTiO3 compounds. Ceram Int 49(Issue 11):17158–17165. https://doi.org/10.1016/j.ceramint.2023.02.079. Part AISSN 0272-8842

    Article  CAS  Google Scholar 

  53. Bakeer D, Sakr A-H (2019) Structural, optical, magnetic, and dielectric properties of Cr3+ substituted cobalt aluminate nanoparticles. J Superconductivity Novel Magnetism 32. https://doi.org/10.1007/s10948-018-4931-1.

  54. Rayssi C, El Kossi S, Dhahri J, Khirouni K (2018) Frequency and temperature-dependence of dielectric permittivity and electric modulus studies of the solid solution Ca0.85Er0.1Ti1-x Co4x/3O3 (0 ≤ x ≤ 0.1). RSC Adv 8(31):17139–17150. https://doi.org/10.1039/c8ra00794b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Noor H, Riaz S, Iram M, Siddiqi A, Naseem S (2018) Dependence of lattice distortion and dielectric response of zinc aluminate on milling frequency. Key Eng Mater 778:217–224

    Article  Google Scholar 

  56. Ullah F, Ahmad P, Khandaker MU et al. (2024) Structural, dielectric, and magnetic properties of transition metals substituted strontium aluminates for energy storage applications. J Aust Ceram Soc 60:377–383. https://doi.org/10.1007/s41779-024-00997-w

    Article  CAS  Google Scholar 

  57. Liu B, Gu M, Liu X, Huang S, Ni C (2011) Theoretical study of structural, electronic, lattice dynamical and dielectric properties of SrAl2O4. J Alloy Compd 509(11):4300–4303. https://doi.org/10.1016/j.jallcom.2011.01.046. ISSN 0925-838s8

    Article  CAS  Google Scholar 

  58. Jamal EMA, Kumar DS, Anantharaman MR (2011) On structural, optical, and dielectric properties of zinc aluminate nanoparticles. Bull Mater Sci 34:251–259. https://doi.org/10.1007/s12034-011-0071-y

    Article  Google Scholar 

  59. Zhang B, Liu Q, Yan W, Chen Y, Shen A, Zhang H (2017) Relation between structure conversion and spectra-tuning properties of Eu2+-doped strontium aluminate phosphor. J Mater Sci 52. https://doi.org/10.1007/s10853-017-1027-4

Download references

Acknowledgements

We would like to thank the University of Kerala for financial support under the University Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

RM wrote the manuscript text and VTJ and SSS prepared figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to V. T. Jisha.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meenakshi, R., Jisha, V.T. & Soumya, S.S. Structural, phosphorescence, thermal, and dielectric properties of SrAl4O7: Eu3+ nano phosphors. J Sol-Gel Sci Technol (2024). https://doi.org/10.1007/s10971-024-06477-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10971-024-06477-8

Keywords

Navigation