Log in

Insights into the antioxidant and anticancer properties of novel biologically synthesized NiO/Ni2O3 nanoparticles using Sargassum tenerrimum

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Presently, the utilization of nanomaterials has evolved as an appealing alternative for ever-changing healthcare obstacles due to their distinctive features and multifunctional applications. This work aimed to fabricate and analyze novel NiO/Ni2O3 nanoparticles (NPs) using Sargassum tentorium extracts and investigate their antioxidant and anticancer potentials. Diverse analytical instrumental tools were applied to explore NiO/Ni2O3 NPs, including UV–vis diffuse reflectance spectroscopy (UVDRS), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high-resolution scanning electron microscopy (HRTEM), and energy-dispersive X-ray (EDX) analyses. HRTEM images revealed mostly quasi-spherical and wire-shaped NPs with average 97 and 87 nm sizes for NiO/Ni2O3 NPs. Afterward, the biological properties of the biologically manufactured NiO/Ni2O3 NPs were explored. This work assessed the anticancer potential of as-fabricated NiO/Ni2O3 NPs utilizing the MTT assay. The experiment assessed cell viability at doses ranging from 7.81 to 500 µg/mL during a 24 h period for the breast cancer cell line (MCF-7). The study outcomes demonstrate a concentration-dependent effect of fabricated NiO/Ni2O3 NPs on MCF-7 cells. The inhibition of MCF-7 cells increases with the concentration of NiO/Ni2O3 NPs, achieving an IC50 value of 883.4 µg/mL in 24 h. Furthermore, the antioxidant potency of NiO/Ni2O3 NPs was examined via a free radical scavenging ABTS and DPPH assay. At a concentration of 50 μg/mL, NiO/Ni2O3 NPs also exhibited 74.71% ABTS scavenging and 71.62% DPPH scavenging inhibition, respectively. In conclusion, NiO/Ni2O3 NPs manufactured via Sargassum tenerrimum extracts could be promising candidates for further biomedical applications.

Graphical Abstract

Highlights

  • First-time disclosed work on Sargassum tenerrimum-mediated creation of NiO/Ni2O3 NPs via a bio-inspired approach.

  • The manufactured NiO/Ni2O3 NPs were analyzed via UVDRS, FTIR, XRD, FESEM, HRTEM, and EDX analyses.

  • As-prepared NiO/Ni2O3 NPs was investigated for anticancer potential using MTT assay for MCF-7 cell lines.

  • Antioxidant potency of NiO/Ni2O3 NPs was revealed using ABTS and DPPH tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mittelheisser V et al. (2024) Evidence and therapeutic implications of biomechanically regulated immunosurveillance in cancer and other diseases. Nat Nanotechnol 19:281–297

    Article  CAS  PubMed  Google Scholar 

  2. Cuong HN et al. (2022) New frontiers in the plant extract mediated biosynthesis of copper oxide (CuO) nanoparticles and their potential applications: a review. Environ Res 203:111858

    Article  CAS  PubMed  Google Scholar 

  3. Hochella Jr MF et al. (2019) Natural, incidental, and engineered nanomaterials and their impacts on the Earth system. Science 363(6434):eaau8299

    Article  PubMed  Google Scholar 

  4. Wang W, Wang B, Zhang S (2024) Dispersion, properties, and mechanisms of nanotechnology-modified alkali-activated materials: a review. Renew Sustain Energy Rev 192:114215

    Article  CAS  Google Scholar 

  5. Shreyash N et al. (2021) Green synthesis of nanoparticles and their biomedical applications: a review. ACS Appl Nano Mater 4(11):11428–11457

    Article  CAS  Google Scholar 

  6. Pansambal S et al. (2023) Bioengineered cerium oxide (CeO2) nanoparticles and their diverse applications: a review. Appl Nanosci 13(9):6067–6092

    Article  CAS  Google Scholar 

  7. Ghosh P et al. (2024) Recent advances of nanotechnology in ameliorating bioenergy production: a comprehensive review. Sustain Chem Pharm 37:101392

    Article  CAS  Google Scholar 

  8. Ghotekar S et al. (2024) A novel approach towards biosynthesis of BiVO4 nanoparticles and their anticancer, antioxidant, and photocatalytic activities. J Sol Gel Sci Technol 109:784–794

    Article  CAS  Google Scholar 

  9. Chauhan A et al. (2023) Recent trends in phyto-mediated iron-based nanomaterials for environmental remediation and biomedical applications. Inorg Chem Commun 160:111976

    Article  Google Scholar 

  10. Ghotekar S et al. (2023) Spinel ZnCr2O4 nanorods synthesized by facile sol-gel auto combustion method with biomedical properties. J Sol Gel Sci Technol 105(1):176–185

    Article  CAS  Google Scholar 

  11. Pathiraja AS, Munaweera I (2024) Innovative nanotechnology‐based sustainable food packaging: a brief review. JSFA Rep 4(1):19–32

    Article  CAS  Google Scholar 

  12. George JM, Antony A, Mathew B (2018) Metal oxide nanoparticles in electrochemical sensing and biosensing: a review. Microchim Acta 185:1–26

    Article  CAS  Google Scholar 

  13. Cho NH et al. (2023) Bioinspired chiral inorganic nanomaterials. Nat Rev Bioeng 1(2):88–106

    Article  Google Scholar 

  14. Radulescu D-M et al. (2023) Green synthesis of metal and metal oxide nanoparticles: a review of the principles and biomedical applications. Int J Mol Sci 24(20):15397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chavali MS, Nikolova MP (2019) Metal oxide nanoparticles and their applications in nanotechnology. SN Appl Sci 1(6):607

    Article  CAS  Google Scholar 

  16. Naseem T, Durrani T (2021) The role of some important metal oxide nanoparticles for wastewater and antibacterial applications: a review. Environ Chem Ecotoxicol 3:59–75

    Article  CAS  Google Scholar 

  17. Ferlay J et al. (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386

    Article  CAS  PubMed  Google Scholar 

  18. Jung I et al. (2024) Modification of immune cell-derived exosomes for enhanced cancer immunotherapy: current advances and therapeutic applications. Exp Mol Med 56:19–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Capelan M et al. (2017) The prevalence of unmet needs in 625 women living beyond a diagnosis of early breast cancer. Br J Cancer 117(8):1113–1120

    Article  PubMed  PubMed Central  Google Scholar 

  20. Obeagu EI, Obeagu GU (2024) Breast cancer: a review of risk factors and diagnosis. Medicine 103(3):e36905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Van Baelen K et al. (2024) Reporting on invasive lobular breast cancer in clinical trials: a systematic review. npj Breast Cancer 10(1):23

    Article  PubMed  PubMed Central  Google Scholar 

  22. Arnold M et al. (2022) Current and future burden of breast cancer: global statistics for 2020 and 2040. Breast 66:15–23

    Article  PubMed  PubMed Central  Google Scholar 

  23. World Health Organization, WHO (2023) Global breast cancer initiative implementation framework: assessing, strengthening and scaling-up of services for the early detection and management of breast cancer. Geneva, World Health Organization 2023

  24. Lushchak VI (2014) Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact 224:164–175

    Article  CAS  PubMed  Google Scholar 

  25. Chaudhary P et al. (2023) Oxidative stress, free radicals and antioxidants: potential crosstalk in the pathophysiology of human diseases. Front Chem 11:1158198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Trouba KJ et al. (2002) Oxidative stress and its role in skin disease. Antioxid Redox Signal 4(4):665–673

    Article  CAS  PubMed  Google Scholar 

  27. Black HS (2022) A synopsis of the associations of oxidative stress, ROS, and antioxidants with diabetes mellitus. Antioxidants 11(10):2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Samrot AV et al. (2022) Nanoparticles, a double-edged sword with oxidant as well as antioxidant properties—a review. Oxygen 2(4):591–604

    Article  CAS  Google Scholar 

  29. Ge X, Cao Z, Chu L (2022) The antioxidant effect of the metal and metal-oxide nanoparticles. Antioxidants 11(4):791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shinde S et al. (2023) Bio-inspired synthesis and characterizations of groundnut shells-mediated Cu/CuO/Cu2O nanoparticles for anticancer, antioxidant, and DNA damage activities. J Sol Gel Sci Technol 106(3):737–747

    Article  CAS  Google Scholar 

  31. Abdullah JAA et al. (2022) Green synthesis of FexOy nanoparticles with potential antioxidant properties. Nanomaterials 12(14):2449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jeevanandam J, Chan YS, Danquah MK (2016) Biosynthesis of metal and metal oxide nanoparticles. ChemBioEng Rev 3(2):55–67

    Article  Google Scholar 

  33. Sawan S et al. (2020) Metal and metal oxide nanoparticles in the voltammetric detection of heavy metals: a review. TrAC Trends Anal Chem 131:116014

    Article  CAS  Google Scholar 

  34. Narender SS et al. (2022) Nickel oxide nanoparticles: a brief review of their synthesis, characterization, and applications. Chem Eng Technol 45(3):397–409

    Article  CAS  Google Scholar 

  35. Ahmad W et al. (2022) A review on current trends in the green synthesis of nickel oxide nanoparticles, characterizations, and their applications. Environ Nanotechnol Monit Manag 18:100674

    CAS  Google Scholar 

  36. Abbasi BA et al. (2019) Plant-mediated synthesis of nickel oxide nanoparticles (NiO) via Geranium wallichianum: characterization and different biological applications. Mater Res Express 6(8):0850a7

    Article  CAS  Google Scholar 

  37. Bhoye M et al. (2023) Eco-friendly synthesis of Ni/NiO nanoparticles using Gymnema sylvestre leaves extract for antifungal activity. J Compos Sci 7(3):105

    Article  CAS  Google Scholar 

  38. Dehmani Y, Abouarnadasse S (2020) Study of the adsorbent properties of nickel oxide for phenol depollution. Arab J Chem 13(5):5312–5325

    Article  CAS  Google Scholar 

  39. Liu Z et al. (2017) Nickel oxide nanoparticles for efficient hole transport in pin and nip perovskite solar cells. J Mater Chem A 5(14):6597–6605

    Article  CAS  Google Scholar 

  40. Mokoena TP, Swart HC, Motaung DE (2019) A review on recent progress of p-type nickel oxide based gas sensors: future perspectives. J Alloy Compd 805:267–294

    Article  CAS  Google Scholar 

  41. Park J et al. (2005) Monodisperse nanoparticles of Ni and NiO: synthesis, characterization, self-assembled superlattices, and catalytic applications in the Suzuki coupling reaction. Adv Mater 17(4):429–434

    Article  CAS  Google Scholar 

  42. Barzinjy AA et al. (2020) Green and eco-friendly synthesis of nickel oxide nanoparticles and its photocatalytic activity for methyl orange degradation. J Mater Sci Mater Electron 31(14):11303–11316

    Article  CAS  Google Scholar 

  43. Jahromi SP et al. (2015) Influence of particle size on performance of a nickel oxide nanoparticle-based supercapacitor. RSC Adv 5(18):14010–14019

    Article  Google Scholar 

  44. More SL et al. (2021) Review and evaluation of the potential health effects of oxidic nickel nanoparticles. Nanomaterials 11(3):642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Larrañaga-Tapia M et al. (2024) Green synthesis trends and potential applications of bimetallic nanoparticles towards the sustainable development goals 2030. Nanoscale Adv 6(1):51–71

    Article  Google Scholar 

  46. Osman AI et al. (2024) Synthesis of green nanoparticles for energy, biomedical, environmental, agricultural, and food applications: a review. Environ Chem Lett 22:841–887

    Article  CAS  Google Scholar 

  47. Pagar T et al. (2021) Phytogenic synthesis of manganese dioxide nanoparticles using plant extracts and their biological application. In: Handbook of greener synthesis of nanomaterials and compounds. Elsevier, Netherlands 2:209–218

  48. Ghotekar S et al. (2024) Eco-friendly fabrication of CdO nanoparticles using Polyalthia longifolia leaves extract for antibacterial and electrochemical sensing studies. J Sol Gel Sci Technol 110:221–232

    Article  CAS  Google Scholar 

  49. Ghotekar S et al. (2023) Green synthesis of CeVO4 nanoparticles using Azadirechta indica leaves extract and their promising applications as an antioxidant and anticancer agent. J Sol Gel Sci Technol 106(3):726–736

    Article  CAS  Google Scholar 

  50. Kumar PP et al. (2021) Synthesis of magnesium oxide nanoparticle by eco friendly method (green synthesis) – a review. Mater Today Proc 37:3028–3030

    Article  Google Scholar 

  51. Periakaruppan R et al. (2023) Phyto-synthesis, characterization of magnesium oxide nanoparticles using aqueous extract of Piper betle leaf and an assessment of its antioxidant potential. Biomass Convers Biorefin 1–8

  52. Perumalsamy H et al. (2024) A comprehensive review on Moringa oleifera nanoparticles: importance of polyphenols in nanoparticle synthesis, nanoparticle efficacy and their applications. J Nanobiotechnol 22(1):71

    Article  CAS  Google Scholar 

  53. Salmi C et al. (2024) Biosynthesized MgO@SnO2 nanocomposite and their modification with polyvinylpyrrolidone. Efficiency for removal of heavy metals and contaminants from industrial petroleum wastewater. Clean Technol Environ Policy 1–20.

  54. Mohammed Mohammed HA et al. (2023) A novel biosynthesis of MgO/PEG nanocomposite for organic pollutant removal from aqueous solutions under sunlight irradiation. Environ Sci Pollut Res 30(19):57076–57085

    Article  CAS  Google Scholar 

  55. Barot M, Kumar N, Kumar RN (2016) Bioactive compounds and antifungal activity of three different seaweed species Ulva lactuca, Sargassum tenerrimum and Laurencia obtusa collected from Okha coast, Western India. J Coast Life Med 4(4):284–289

    Article  CAS  Google Scholar 

  56. Kalasariya HS, Patel NB (2022) Phycochemical characterization of marine Macroalga Sargassum tenerrimum collected from Beyt Dwarka, Western coast of Gujarat, India. Orient J Chem 38(2):361

    Article  CAS  Google Scholar 

  57. Sinha S et al. (2010) Polysaccharides from Sargassum tenerrimum: structural features, chemical modification and anti-viral activity. Phytochemistry 71(2-3):235–242

    Article  CAS  PubMed  Google Scholar 

  58. Veeragoni D et al. (2023) In vitro and in vivo antimalarial activity of green synthesized silver nanoparticles using Sargassum tenerrimum – a marine seaweed. Acta Tropica 245:106982

    Article  CAS  PubMed  Google Scholar 

  59. Abdullah JAA, Guerrero A, Romero A (2024) Efficient and sustainable synthesis of zinc salt-dependent polycrystal zinc oxide nanoparticles: comprehensive assessment of physicochemical and functional properties. Appl Sci 14(5):1815

    Article  CAS  Google Scholar 

  60. Abdullah JAA et al. (2022) Biopolymer-based films reinforced with green synthesized zinc oxide nanoparticles. Polymers 14(23):5202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Barwant M et al. (2022) Eco-friendly synthesis and characterizations of Ag/AgO/Ag2O nanoparticles using leaf extracts of Solanum elaeagnifolium for antioxidant, anticancer, and DNA cleavage activities. Chem Pap 76(7):4309–4321

    Article  CAS  Google Scholar 

  62. Abdullah JAA et al. (2023) Sustainable nanomagnetism: investigating the influence of green synthesis and pH on iron oxide nanoparticles for enhanced biomedical applications. Polymers 15(18):3850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Abdullah JAA et al. (2023) Effect of calcination temperature and time on the synthesis of iron oxide nanoparticles: green vs. chemical method. Materials 16(5):1798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Reid BT, Reed SM (2016) Improved methods for evaluating the environmental impact of nanoparticle synthesis. Green Chem 18(15):4263–4269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Imran Din M, Rani A (2016) Recent advances in the synthesis and stabilization of nickel and nickel oxide nanoparticles: a green adeptness. Int J Anal Chem 2016(1):351245

    Google Scholar 

  66. NK MS et al. (2022) Remarkable COx tolerance of Ni3+ active species in a Ni2O3 catalyst for sustained electrochemical urea oxidation. J Mater Chem A 10(8):4209–4221

    Article  Google Scholar 

  67. Holzwarth U, Gibson N (2011) The Scherrer equation versus the 'Debye-Scherrer equation’. Nat Nanotechnol 6(9):534–534

    Article  CAS  PubMed  Google Scholar 

  68. López-Miranda JL et al. (2021) Green synthesis of homogeneous gold nanoparticles using sargassum spp. extracts and their enhanced catalytic activity for organic dyes. Toxics 9(11):280

    Article  PubMed  PubMed Central  Google Scholar 

  69. Guerrero‐Pérez MO, Patience GS (2020) Experimental methods in chemical engineering: Fourier transform infrared spectroscopy—FTIR. Can J Chem Eng 98(1):25–33

    Article  Google Scholar 

  70. Sharma AK et al. (2015) Extraction of nickel nanoparticles from electroplating waste and their application in production of bio-diesel from biowaste. Int J Chem Eng Appl 6(3):156

    CAS  Google Scholar 

  71. Ezhilarasi AA et al. (2016) Green synthesis of NiO nanoparticles using Moringa oleifera extract and their biomedical applications: cytotoxicity effect of nanoparticles against HT-29 cancer cells. J Photochem Photobiol B Biol 164:352–360

    Article  CAS  Google Scholar 

  72. Din SU et al. (2022) Investigation of the biological applications of biosynthesized nickel oxide nanoparticles mediated by Buxus wallichiana extract. Crystals 12(2):146

    Article  CAS  Google Scholar 

  73. Zhang Y et al. (2021) Green synthesis of NiO nanoparticles using Calendula officinalis extract: chemical charactrization, antioxidant, cytotoxicity, and anti-esophageal carcinoma properties. Arab J Chem 14(5):103105

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization (MB, SG), investigation (MB, DK), formal analysis (MB, SS, SG), validation (MM, MSJ), visualization (MB, DS), writing of original draft (MB, PB, SG), supervision (VK), reviewing & editing (VK, SG).

Corresponding authors

Correspondence to Vanita Karande or Suresh Ghotekar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barwant, M., Karande, V., Basnet, P. et al. Insights into the antioxidant and anticancer properties of novel biologically synthesized NiO/Ni2O3 nanoparticles using Sargassum tenerrimum. J Sol-Gel Sci Technol (2024). https://doi.org/10.1007/s10971-024-06446-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10971-024-06446-1

Keywords

Navigation