Log in

Effect of Y0.5Er0.5Ho0.5Yb0.5O3 addition on the microstructure and thermal stability of continuous alumina fibers

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Continuous alumina fibers with excellent thermal stability are essential in high-temperature applications. In this study, 0~1 wt% Y0.5Er0.5Ho0.5Yb0.5O3 were added to the alumina fibers to enhance thermal stability. The impact of Y0.5Er0.5Ho0.5Yb0.5O3 addition on alumina fibers’ transformation and microstructure evolution of during the sintering process was systematically studied. The influence of single- and two-step sintering processes on the fiber microstructures was elucidated. The results suggested that adding Y0.5Er0.5Ho0.5Yb0.5O3 impeded fiber densification, inhibited alumina grain growth, and enhanced the thermal stability of fibers. Using a two-step sintering process facilitated the achievement of fully dense alumina fibers with fine grains. The alumina fibers added with 1.0 wt% Y0.5Er0.5Ho0.5Yb0.5O3 exhibited a remarkable strength retention rate of up to 93% after exposure to 1200 °C for 10 h. The TEM analysis revealed that rare earth elements segregation at α-Al2O3 grain boundaries due to their larger radius than the Al element contributed to stabilizing the microstructures of α-Al2O3 fibers at high service temperature.

Graphical Abstract

Highlights

  • The addition of Y0.5Er0.5Ho0.5Yb0.5O3 impeded fiber densification, inhibited alumina grain growth.

  • After being held at 1200 °C for 10 h, the strength retention rate of alumina fiber with 1 wt% Y0.5Er0.5Ho0.5Yb0.5O3 is about 93%.

  • Rare earth elements segregate at the grain boundary of alumina fiber, stabilizing the size of fine α-Al2O3 grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Zhang P, Jiao X, Chen D (2013) Fabrication of electrospun Al2O3 fibers with CaO-SiO2 additive. Mater Lett 91:23–26. https://doi.org/10.1016/j.matlet.2012.09.077

    Article  CAS  Google Scholar 

  2. Schmücker M, Flucht F, Schneider H (1996) High temperature behaviour of polycrystalline aluminosilicate fibres with mullite bulk composition. I. Microstructure and strength properties. J Eur Ceram Soc 16(2):281–285. https://doi.org/10.1016/0955-2219(95)00152-2

    Article  Google Scholar 

  3. Pfeifer S, Demirci P, Duran R, Stolpmann H, Renfftlen A, Nemrava S, Niewa R, Clauss B, Buchmeiser MR (2016) Synthesis of zirconia toughened alumina (ZTA) fibers for high performance materials. J Eur Ceram Soc 36(3):725–731. https://doi.org/10.1016/j.jeurceramsoc.2015.10.028

    Article  CAS  Google Scholar 

  4. McArdle JL, Messing GL (1993) Transformation, microstructure development, and densification in α-Fe2O3-seeded boehmite-derived alumina. J Am Ceram Soc 76(1):214–222. https://doi.org/10.1111/j.1151-2916.1993.tb03710.x

    Article  CAS  Google Scholar 

  5. Li L, Liu X, Wang G, Liu Y, Kang W, Deng N, Zhuang X, Zhou X (2021) Research progress of ultrafine alumina fiber prepared by sol-gel method: a review. Chem Eng J 421. https://doi.org/10.1016/j.cej.2020.127744

  6. Clauss B, Schawaller D (2006) Modern aspects of ceramic fiber development. Adv Sci Technol 50:1–8. https://doi.org/10.4028/www.scientific.net/AST.50.1

  7. Zhu C, Cao F, **ang Y, Peng Z (2020) Effects of sintering temperature on mechanical properties of alumina fiber reinforced alumina matrix composites. J Sol Gel Sci Technol 93(1):185–192. https://doi.org/10.1007/s10971-019-05192-z

    Article  CAS  Google Scholar 

  8. Wilson DM, Visser LR (2001) High performance oxide fibers for metal and ceramic composites. Compos Part A Appl Sci Manuf 32(8):1143–1153. https://doi.org/10.1016/S1359-835X(00)00176-7

    Article  Google Scholar 

  9. Yalamaç E, Sutcu M, Basturk SB (2017) Ceramic fibers. Fiber Technology for Fiber-Reinforced Composites. Elsevier, pp 187–207. https://doi.org/10.1016/B978-0-08-101871-2.00009-6

  10. Bunsell AR (2005) Oxide fibers for high-temperature reinforcement and insulation. JOM 57(2):48–51. https://doi.org/10.1007/s11837-005-0216-9

    Article  CAS  Google Scholar 

  11. Xue J, Yin X, Pan H, Zhang L, Cheng L (2017) Electromagnetic characteristics and microstructure stability of Nextel 610 fiber after heat treatment. Ceram Int 43(5):4630–4637. https://doi.org/10.1016/j.ceramint.2016.12.132

    Article  CAS  Google Scholar 

  12. **g C, Xu X, Hou J (2008) Synthesis of sub-micro-sized solid alpha alumina fibers with smooth surfaces by sol-gel method. J Sol Gel Sci Technol 45(1):109–113. https://doi.org/10.1007/s10971-007-1644-5

    Article  CAS  Google Scholar 

  13. Chatterjee M, Naskar MK, Chakrabarty PK, Ganguli D (2002) Sol-gel alumina fibre mats for high-temperature applications. Mater Lett 57(1):87–93. https://doi.org/10.1016/S0167-577X(02)00704-8

    Article  CAS  Google Scholar 

  14. Poulon-Quintin A, Berger MH, Bunsell AR (2004) Mechanical and microstructural characterisation of Nextel 650 alumina-zirconia fibres. J Eur Ceram Soc 24(9):2769–2783. https://doi.org/10.1016/j.jeurceramsoc.2003.08.011

    Article  CAS  Google Scholar 

  15. Armani CJ, Ruggles-Wrenn MB, Hay RS, Fair GE (2013) Creep and microstructure of Nextel™ 720 fiber at elevated temperature in air and in steam. Acta Mater 61(16):6114–6124. https://doi.org/10.1016/j.actamat.2013.06.053

    Article  CAS  Google Scholar 

  16. Yoshida H, Okada K, Ikuhara Y, Sakuma T (1997) Improvement of high-temperature creep resistance in fine-grained Al2O3 by Zr4+ segregation in grain boundaries. Philos Mag Lett 76(1):9–14. https://doi.org/10.1080/095008397179327

    Article  CAS  Google Scholar 

  17. Zhu C, Zheng Z, Cao F, **ang Y, Peng Z (2021) High-temperature properties of Al2O3/SiO2 composites. J Sol Gel Sci Technol 97(1):63–70. https://doi.org/10.1007/s10971-020-05413-w

    Article  CAS  Google Scholar 

  18. Chen Z, Zhang Z, Tsai C-C, Kornev K, Luzinov I, Fang M, Peng F (2015) Electrospun mullite fibers from the sol-gel precursor. J Sol Gel Sci Technol 74(1):208–219. https://doi.org/10.1007/s10971-014-3599-7

    Article  CAS  Google Scholar 

  19. Maiti K, Sil A (2011) Microstructural relationship with fracture toughness of undoped and rare earths (Y, La) doped Al2O3-ZrO2 ceramic composites. Ceram Int 37(7):2411–2421. https://doi.org/10.1016/j.ceramint.2011.05.089

    Article  CAS  Google Scholar 

  20. Moorehead C, Blair V, Ku N, Brennan R (2020) The effect of rare-earth dopants on the texturing of alumina under high-strength magnetic field. Mater Chem Phys 241. https://doi.org/10.1016/j.matchemphys.2019.122388

  21. Church JS, Cant NW, Trimm DL (1993) ChemInform abstract: stabilization of aluminas by rare earth and alkaline earth ions. ChemInform 24(45). https://doi.org/10.1002/chin.199345028

  22. Schaper H, Amesz DJ, Doesburg EBM, Van Reijen LL (1984) The influence of high partial steam pressures on the sintering of lanthanum oxide doped gamma alumina. Appl Catal 9(1):129–132. https://doi.org/10.1016/0166-9834(84)80043-3

    Article  CAS  Google Scholar 

  23. Yasuda S, Yoshida H, Yamamoto T, Sakuma T (2004) Improvement of high-temperature creep resistance in polycrystalline Al2O3 by cations co-do**. Mater Trans 45(7):2078–2082. https://doi.org/10.2320/matertrans.45.2078

    Article  CAS  Google Scholar 

  24. Wu C, Zhan L, Liu Q, Liu H, Wang J, Liu W, Yao S, Ma Y (2023) Grain boundary segregation for enhancing the thermal stability of alumina-mullite diphasic fibers by La2O3 addition. J Eur Ceram Soc 43(15):7012–7022. https://doi.org/10.1016/j.jeurceramsoc.2023.07.017

    Article  CAS  Google Scholar 

  25. Zhou C, Luo Z, Du T, Sun H, Wang J, Sun L, Wang J (2022) Directionally solidified high-entropy (Y0.2Gd0.2Ho0.2Er0.2Yb0.2)3Al5O12/Al2O3 eutectic with outstanding crystallographic texture formation capability. Scr Mater 220. https://doi.org/10.1016/j.scriptamat.2022.114939

  26. Liu L, Wang J, Ma Y, Liu W, Yao S (2020) Preparation of continuous alumina fiber with nano grains by the addition of iron sol. Materials 13(23). https://doi.org/10.3390/ma13235442

  27. Liu Q, Wu C, Zhan L, Liu W, Yao S, Wang J, Ma Y (2023) Effect of residual carbon on the phase transformation and microstructure evolution of alumina-mullite fibers prepared by sol-gel method. J Eur Ceram Soc 43(3):1039–1050. https://doi.org/10.1016/j.jeurceramsoc.2022.10.069

    Article  CAS  Google Scholar 

  28. Liu Q, Wang J, Zhan L, Wu C, Liu W, Yao S, Ma Y (2023) Removal of hydroxyl groups and its influence on the microstructures evolution of alumina-mullite fibers fabricated by sol-gel process. Ceram Int 49(11):18397–18411. https://doi.org/10.1016/j.ceramint.2023.02.212

    Article  CAS  Google Scholar 

  29. Neckel L, Pereira da Silva JG, Guglielmi P, Hotza D, Al-Qureshi HA, Montedo ORK, Bergmann CP, Janssen R (2015) Mechanical tests and simulation on load sharing in alumina fiber bundles. Ceram Int 41(10):13257–13263. https://doi.org/10.1016/j.ceramint.2015.07.105

    Article  CAS  Google Scholar 

  30. Bergman B (1986) Estimation of Weibull parameters using a weight function. J Mater Sci Lett 5(6):611–614. https://doi.org/10.1007/BF01731525

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant no. U20A20240, 52001333).

Author information

Authors and Affiliations

Authors

Contributions

YC, JW, WL, YM and SY contributed to the investigation of the study. YC, JW and SY prepared and analyzed the fibers. YC, JW and SY wrote the manuscript. WL and YM gave guidance for the investigation and gave comments on the manuscript. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Shuwei Yao or Juan Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Liu, W., Ma, Y. et al. Effect of Y0.5Er0.5Ho0.5Yb0.5O3 addition on the microstructure and thermal stability of continuous alumina fibers. J Sol-Gel Sci Technol 110, 619–634 (2024). https://doi.org/10.1007/s10971-024-06393-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-024-06393-x

Keywords

Navigation