Log in

Free radical scavenging and antimicrobial activities of MW assisted sol-gel synthesized honey mediated zirconia

  • Original Paper: Sol-gel and hybrid materials for biological and health (medical) applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Demand of zirconia based bone implant substitutes is increasing day after day as it creates a pathogen free environment along with healing and osseointegration. A big problem associated with zirconia is its stability as its biocompatibility and mechanical properties alter from stabilized tetragonal zirconia to monoclinic leading towards the poor cosmesis. Present work’s aim is preparation of stabilized zirconia by employing microwave (MW) assisted sol–gel technique. Honey is used to prevent particles from hard agglomeration that acted as cap** agent. Effect of microwave powers on zirconia stabilization is observed in the range of 100–1000 W. Low microwave values of 100 and 200 W lead to formation of pure phase of t-ZrO2. High hardness value (~1510 HV) is observed at 100 W with fracture toughness ~28.80 MPam−1/2. Binding energy values of Zr3d3/2 and Zr3d5/2 are observed at 185.33 eV and 183.92 eV, respectively. Vibrating sample magnetometer results show the superparamagnetic behavior for optimized sample which is well suited for biological applications. Pure phase zirconia prepared using 100 W microwave power shows relatively higher value of dielectric constant (~73) and low tangent loss. Biodegradation studies show smaller values of weight loss even after immersion in simulated body fluid (SBF) after 26 weeks. Antibacterial activity shows highest zone of inhibition (~33 mm) against E.coli bacteria. Honey mediated zirconia shows high anti-oxidant activity. Thus, honey mediated zirconia can be successfully employed for bone implants.

Synthesis of zirconia is done by means of microwave powers. ZrOCl2.8H2O and de-ionized water were used as starters. Afterwards, honey was added that acted as cap** agent. Obtained sol was further dried in microwave reactor by varying microwave powers. These obtained samples can be used as bone implant as they can inhibit the growth of reactive oxygen species (ROS) and cure inflammations and have tendency to protect bone from further bacterial attacks and damages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Kawai, Y, Uo, M, Wang, Y, Kono, S, Ohnuki, S, & Watari, F (2011). Phase transformation of zirconia ceramics by hydrothermal degradation. Dental Mater J, 1105140139–1105140139.

  2. Tosiriwatanapong T, Singhatanadgit W (2018) Zirconia-based biomaterials for hard tissue reconstruction. Bone Tissue Regeneration Insights 9:1179061X18767886

    Article  Google Scholar 

  3. Hajizadeh-Oghaz M, Razavi RS, Khajelakzay M (2015) Optimizing sol–gel synthesis of magnesia-stabilized zirconia (MSZ) nanoparticles using Taguchi robust design for thermal barrier coatings (TBCs) applications. J Sol-Gel Sci Technol 73(1):227–241

    Article  CAS  Google Scholar 

  4. Chevalier J (2006) What future for zirconia as a biomaterial? Biomaterials 27(4):535–543

    Article  CAS  Google Scholar 

  5. Shi Q, Yuan W, Chao X, Zhu Z (2017) Phase stability, thermal conductivity and crystal growth behaviour of RE2O3 (RE= La, Yb, Ce, Gd) co-doped Y2O3 stabilized ZrO2 powder. J Sol-Gel Sci Technol 84(2):341–348

    Article  CAS  Google Scholar 

  6. Li X, Shimizu Y, Pyatenko A, Wang H, Koshizaki N (2012) Tetragonal zirconia spheres fabricated by carbon-assisted selective laser heating in a liquid medium. Nanotechnology 23(11):115602

    Article  CAS  Google Scholar 

  7. Gupta TK, Bechtold JH, Kuznicki RC, Cadoff LH, Rossing BR (1977) Stabilization of tetragonal phase in polycrystalline zirconia. J Mater Sci 12(12):2421–2426

    Article  CAS  Google Scholar 

  8. El-Kased RF, Amer RI, Attia D, Elmazar MM (2017) Honey-based hydrogel: in vitro and comparative in vivo evaluation for burn wound healing. Sci Rep. 7(1):1–11

    Article  Google Scholar 

  9. Philip D (2009) Honey mediated green synthesis of gold nanoparticles. Spectrochimica Acta Part A: Mol Biomolecular Spectrosc 73(4):650–653

    Article  CAS  Google Scholar 

  10. Philip D (2010) Honey mediated green synthesis of silver nanoparticles. Spectrochimica Acta Part A: Mol Biomolecular Spectrosc 75(3):1078–1081

    Article  CAS  Google Scholar 

  11. Venu R, Ramulu TS, Anandakumar S, Rani VS, Kim CG (2011) Bio-directed synthesis of platinum nanoparticles using aqueous honey solutions and their catalytic applications. Colloids Surf A: Physicochemical Eng Asp 384(1-3):733–738

    Article  CAS  Google Scholar 

  12. Reddy SM, Datta KKR, Sreelakshmi C, Eswaramoorthy M, Reddy BV (2012) Honey mediated green synthesis of Pd nanoparticles for suzuki coupling and hydrogenation of conjugated olefins. Nanosci Nanotechnol Lett 4(4):420–425

    Article  CAS  Google Scholar 

  13. Heshmatpour F, Aghakhanpour RB (2011) Synthesis and characterization of nanocrystalline zirconia powder by simple sol–gel method with glucose and fructose as organic additives. Powder Technol 205(1-3):193–200

    Article  CAS  Google Scholar 

  14. Ghelich R, Aghdam RM, Sadat Torknik F, Jahannama MR (2018) Synthesis and characterization of biocompatible zirconia nanofibers based on electrospun PVP/Zr (OPr)4. Mater Today: Proc 5(7):15733–15738

    CAS  Google Scholar 

  15. Piticescu RR, Monty C, Taloi D, Motoc A, Axinte S (2001) Hydrothermal synthesis of zirconia nanomaterials. J Eur Ceram Soc 21(10-11):2057–2060

    Article  CAS  Google Scholar 

  16. Thenmozhi S, Dharmaraj N, Kadirvelu K, Kim HY (2017) Electrospun nanofibers: New generation materials for advanced applications. Mater Sci Eng: B 217:36–48

    Article  CAS  Google Scholar 

  17. Azad AM (2006) Fabrication of yttria-stabilized zirconia nanofibers by electrospinning. Mater Lett 60(1):67–72

    Article  CAS  Google Scholar 

  18. Siddiqui MRH, Al-Wassil AI, Al-Otaibi AM, Mahfouz RM (2012) Effects of precursor on the morphology and size of ZrO2 nanoparticles, synthesized by sol-gel method in non-aqueous medium. Mater Res 15:986–989

    Article  CAS  Google Scholar 

  19. Xu X, Guo G, Fan Y (2010) Fabrication and characterization of dense zirconia and zirconia-silica ceramic nanofibers. J Nanosci Nanotechnol 10(9):5672–5679

    Article  CAS  Google Scholar 

  20. Zhao Y, Tang Y, Guo Y, Bao X (2010) Studies of electrospinning process of zirconia nanofibers. Fibers Polym 11(8):1119–1122

    Article  CAS  Google Scholar 

  21. Manjunatha S, Dharmaprakash MS (2016) Microwave assisted synthesis of cubic Zirconia nanoparticles and study of optical and photoluminescence properties. J Lumin 180:20–24

    Article  CAS  Google Scholar 

  22. Bukhari BS, Imran M, Bashir M, Riaz S, Naseem S (2018) Honey mediated microwave assisted sol–gel synthesis of stabilized zirconia nanofibers. J Sol-Gel Sci Technol 87(3):554–567

    Article  CAS  Google Scholar 

  23. Bukhari SB, Imran M, Bashir M, Riaz S, Naseem S (2018) Room temperature stabilized TiO2 doped ZrO2 thin films for teeth coatings–A sol-gel approach. J Alloy Compd 767:1238–1252

    Article  CAS  Google Scholar 

  24. Das VK, Das S, Thakur AJ (2012) Protection and deprotection chemistry catalyzed by zirconium oxychloride octahydrate (ZrOCl2· 8H2O). Green Chem Lett Rev 5(4):577–586

    Article  CAS  Google Scholar 

  25. Yousaf H, Azhar M, Bashir M, Riaz S, Kayani ZN, Naseem S (2020) Effect of cap** agent on microwave assisted sol-gel synthesized zirconia coatings for optical applications. Optik 222:165297

    Article  CAS  Google Scholar 

  26. Palmero P, Montanaro L, Reveron H, Chevalier J (2014) Surface coating of oxide powders: A new synthesis method to process biomedical grade nano-composites. Materials 7(7):5012–5037

    Article  CAS  Google Scholar 

  27. Koo JY, Hwang S, Ahn M, Choi M, Byun D, Lee W (2016) Controlling the diameter of electrospun Yttria‐stabilized zirconia nanofibers. J Am Ceram Soc 99(9):3146–3150

    Article  CAS  Google Scholar 

  28. Panapoy M, Ksapabutr B (2008) Fabrication of Zirconia nanofibers using Zirconatrane synthesized by Oxide One-Pot Process as precursor. Adv Mater Res 55:605–608

    Article  Google Scholar 

  29. Chattopadhyay S, Bysakh S, Saha J, De G (2018) Electrospun ZrO2 nanofibers: precursor controlled mesopore ordering and evolution of garland-like nanocrystal arrays. Dalton Trans 47(16):5789–5800

    Article  CAS  Google Scholar 

  30. Parera JM (1992) Promotion of zirconia acidity by addition of sulfate ion. Catal today 15(3-4):481–490

    Article  CAS  Google Scholar 

  31. Son JR, Gwon TD, Kim SB (2001) Characterization of zirconium sulfate supported on zirconia and activity for acid catalysis. Bull Korean Chem Soc 22(12):1309–1315

    Google Scholar 

  32. American Society for Testing of Materials (1999) Designation C1327-99 Standard test method for Vickers indentation hardness of advanced ceramics Annual Book of ASTM Standards 15.01. ASTM, Philadelphia

  33. Ong, KCG, & Akbarnezhad, A (2006). Thermal stresses in microwave heating of concrete. Proc. 31st Our World in Concrete and Structures, 297–310.

  34. Sun J, Wang W, Yue Q (2016) Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies. Materials 9(4):231

    Article  CAS  Google Scholar 

  35. Cullity, BD (1956). Elements of X-ray Diffraction. Addison-Wesley Publishing, New York, NY, USA.

  36. Garvie RC (1965) The occurrence of metastable tetragonal zirconia as a crystallite size effect. J Phys Chem 69(4):1238–1243

    Article  CAS  Google Scholar 

  37. Tyagi B, Sidhpuria K, Shaik B, Jasra RV (2006) Synthesis of nanocrystalline zirconia using sol− gel and precipitation techniques. Ind Eng Chem Res 45(25):8643–8650

    Article  CAS  Google Scholar 

  38. Riaz S, Ashraf R, Akbar A, Naseem S (2014) Microwave assisted iron oxide nanoparticles—structural and magnetic properties. IEEE Trans Magn 50(8):1–4

    Google Scholar 

  39. Majid F, Mirza ST, Riaz S, Naseem S (2015) Sol-gel synthesis of BiFeO3 nanoparticles. Mater Today: Proc 2(10):5293–5297

    Google Scholar 

  40. Guazzato M, Albakry M, Ringer SP, Swain MV (2004) Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part II. Zirconia-based dental ceramics. Dent Mater 20(5):449–456

    Article  CAS  Google Scholar 

  41. Guazzato, M, Albakry, M, Swain, MV, & Ironside, J (2002). Mechanical properties of In-Ceram Alumina and In-Ceram Zirconia. International Journal of Prosthodontics, 15(4).

  42. Li, JC (Ed.). (2011). Mechanical properties of nanocrystalline materials. CRC Press.

  43. Niihara K, Morena R, Hasselman DPH (1982) Evaluation of K Ic of brittle solids by the indentation method with low crack-to-indent ratios. J Mater Sci Lett 1(1):13–16

    Article  CAS  Google Scholar 

  44. McArthur, SL, Mishra, G, & Easton, CD (2014). Applications of XPS in biology and biointerface analysis. In Surface analysis and techniques in biology, Springer, Cham, 9–36.

  45. Bashir M, Riaz S, Kayani ZN, Naseem S (2018) Synthesis of bone implant substitutes using organic additive based zirconia nanoparticles and their biodegradation study. J Mech Behav Biomed Mater 88:48–57

    Article  CAS  Google Scholar 

  46. Park JY, Heo JK, Kang YC (2010) The properties of RF sputtered zirconium oxide thin films at different plasma gas ratio. Bull Korean Chem Soc 31(2):397–400

    Article  CAS  Google Scholar 

  47. Lackner P, Zou Z, Mayr S, Diebold U, Schmid M (2019) Using photoelectron spectroscopy to observe oxygen spillover to zirconia. Phys Chem Chem Phys 21(32):17613–17620

    Article  CAS  Google Scholar 

  48. Batool T, Bukhari BS, Riaz S, Batoo KM, Raslan EH, Hadi M (2020) Microwave assisted sol-gel synthesis of bioactive zirconia nanoparticles–correlation of strength and structure. J Mech Behav Biomed Mater 112:104012

    Article  CAS  Google Scholar 

  49. Gabriel S, Lau RW, Gabriel C (1996) The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol 41(11):2251

    Article  CAS  Google Scholar 

  50. Pethig R (1985) Dielectric and electrical properties of biological materials. J Bioelectr 4(2):vii–ix

    Article  Google Scholar 

  51. Lazebnik M, Converse MC, Booske JH, Hagness SC (2006) Ultrawideband temperature-dependent dielectric properties of animal liver tissue in the microwave frequency range. Phys Med Biol 51(7):1941

    Article  Google Scholar 

  52. Ji Z, Brace CL (2011) Expanded modeling of temperature-dependent dielectric properties for microwave thermal ablation. Phys Med Biol 56(16):5249

    Article  Google Scholar 

  53. Sanaullah I, Imran M, Riaz S, Amin T, Khan IU, Zahoor R, Naseem S (2021) Microwave assisted synthesis of Fe3O4 stabilized ZrO2 nanoparticles–Free radical scavenging, radiolabeling and biodistribution in rabbits. Life Sci 271:119070

    Article  CAS  Google Scholar 

  54. Macdonald JR, Barsoukov E (2005) Impedance spectroscopy: theory, experiment, and applications. History 1(8):1–13

    Google Scholar 

  55. Sharma HB, Devi KN, Gupta V, Lee JH, Singh SB (2014) Ac electrical conductivity and magnetic properties of BiFeO3–CoFe2O4 nanocomposites. J Alloy Compd 599:32–39

    Article  CAS  Google Scholar 

  56. Quartarone E, Mustarelli P, Magistris A (1998) PEO-based composite polymer electrolytes. Solid State Ion 110(1-2):1–14

    Article  CAS  Google Scholar 

  57. Jha AK (2013) Electrical characterization of zirconium substituted barium titanate using complex impedance spectroscopy. Bull Mater Sci 36(1):135–141

    Article  CAS  Google Scholar 

  58. Das R, Sarkar T, Mandal K (2012) Multiferroic properties of Ba2+ and Gd3+ co-doped bismuth ferrite: magnetic, ferroelectric and impedance spectroscopic analysis. J Phys D: Appl Phys 45(45):455002

    Article  CAS  Google Scholar 

  59. Verma KC, Ram M, Singh J, Kotnala RK (2011) Impedance spectroscopy and dielectric properties of Ce and La substituted Pb0.7Sr0.3 (Fe0.012Ti0.988) O3 nanoparticles. J Alloy Compd 509(15):4967–4971

    Article  CAS  Google Scholar 

  60. Imran Z, Rafiq MA, Ahmad M, Rasool K, Batool SS, Hasan MM (2013) Temperature dependent transport and dielectric properties of cadmium titanate nanofiber mats. AIP Adv 3(3):032146

    Article  CAS  Google Scholar 

  61. Miller JS (2011) Magnetically ordered molecule-based materials. Chem Soc Rev 40(6):3266–3296

    Article  CAS  Google Scholar 

  62. Miller JS, Epstein AJ (1994) Organic and organometallic molecular magnetic materials—designer magnets. Angew Chem Int Ed Engl 33(4):385–415

    Article  Google Scholar 

  63. Ovcharenko VI, Sagdeev RZ (1999) Molecular ferromagnets. Russian Chem Rev 68(5):345–363

    Article  CAS  Google Scholar 

  64. Liu H, Yang J, Zhang Y, Yang L, Wei M, Ding X (2009) Structure and magnetic properties of Fe-doped ZnO prepared by the sol–gel method. J Phys: Condens Matter 21(14):145803

    Google Scholar 

  65. Rasouli E, Basirun WJ, Rezayi M, Shameli K, Nourmohammadi E, Khandanlou R, Sarkarizi HK (2018) Ultrasmall superparamagnetic Fe3O4 nanoparticles: honey-based green and facile synthesis and in vitro viability assay. Int J Nanomed 13:6903

    Article  CAS  Google Scholar 

  66. Pattnaik S, Nethala S, Tripathi A, Saravanan S, Moorthi A, Selvamurugan N (2011) Chitosan scaffolds containing silicon dioxide and zirconia nano particles for bone tissue engineering. Int J Biol macromolecules 49(5):1167–1172

    Article  CAS  Google Scholar 

  67. Ochsner, A, & Altenbach, H (Eds.). (2013). Advances in bio-mechanical systems and materials. Springer International Publishing Switzerland 2013.

  68. Sohrabi M, Eftekhari Yekta B, Rezaie H, Naimi-Jamal MR, Kumar A, Cochis A, Miola M, Rimondini L (2020) Enhancing mechanical properties and biological performances of injectable bioactive glass by gelatin and chitosan for bone small defect repair. Biomedicines 8(12):616

    Article  CAS  Google Scholar 

  69. Katsanevakis E, Wen XJ, Shi DL, Zhang N (2010) Biomineralization of polymer scaffolds. Key Eng Mater 441:269–295

    Article  CAS  Google Scholar 

  70. Koutouzis T, Wallet S, Calderon N, Lundgren T (2011) Bacterial colonization of the implant–abutment interface using an in vitro dynamic loading model. J Periodontol 82(4):613–618

    Article  Google Scholar 

  71. Martinotti S, Bucekova M, Majtan J, Ranzato E (2019) Honey: an effective regenerative medicine product in wound management. Curr Medicinal Chem 26(27):5230–5240

    Article  CAS  Google Scholar 

  72. Al-Brahim JS, Mohammed AE (2020) Antioxidant, cytotoxic and antibacterial potentials of biosynthesized silver nanoparticles using bee’s honey from two different floral sources in Saudi Arabia. Saudi. J Biol Sci 27:363–373

    CAS  Google Scholar 

  73. Neupane BP, Chaudhary D, Paudel S, Timsina S, Chapagain B, Jamarkattel N, Tiwari BR (2019) Himalayan honey loaded iron oxide nanoparticles: Synthesis, characterization and study of antioxidant and antimicrobial activities. Int J Nanomed 14:3533

    Article  CAS  Google Scholar 

  74. Bonsignore G, Patrone M, Martinotti S, Ranzato E (2021) “Green” Biomaterials: The Promising Role of Honey. J Funct Biomater 12(4):72

    Article  CAS  Google Scholar 

  75. Balasooriya ER, Jayasinghe CD, Jayawardena UA, Ruwanthika RWD, Mendis de Silva R, Udagama PV (2017) Honey mediated green synthesis of nanoparticles: new era of safe nanotechnology. J Nanomater 2017:10

    Article  CAS  Google Scholar 

  76. Al-Brahim JS, Mohammed AE (2020) Antioxidant, cytotoxic and antibacterial potentials of biosynthesized silver nanoparticles using bee’s honey from two different floral sources in Saudi Arabia. Saudi J Biol Sci 27(1):363–373

    Article  CAS  Google Scholar 

  77. Khalil MI, Sulaiman SA, Boukraa L (2010) Antioxidant properties of honey and its role in preventing health disorder. Open Nutraceuticals J 3(1):6–16

    Article  CAS  Google Scholar 

  78. Golestanzadeh M, Naeimi H, Zahraie Z (2017) Synthesis and antioxidant activity of star-shape phenolic antioxidants catalyzed by acidic nanocatalyst based on reduced graphene oxide. Mater Sci Eng: C 71:709–717

    Article  CAS  Google Scholar 

  79. Balaji S, Mandal BK, Ranjan S, Dasgupta N, Chidambaram R (2017) Nano-zirconia–evaluation of its antioxidant and anticancer activity. J Photochemistry Photobiol B: Biol 170:125–133

    Article  CAS  Google Scholar 

  80. Ferreres F, Ortiz A, Silva C, Garcia-Viguera C, Tomás-Barberán FA, Tomás-Lorente F (1992) Flavonoids of “La Alcarria” honey A study of their botanical origin. Z für Lebensm-Unters und Forsch 194(2):139–143

    Article  CAS  Google Scholar 

  81. Andrade P, Ferreres F, Amaral MT (1997) Analysis of honey phenolic acids by HPLC, its application to honey botanical characterization. J Liq Chromatogr Relat Technol 20(14):2281–2288

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Higher Education Commission Pakistan for providing financial support. The authors thank Dr. Sajid ur Rehman for providing XPS analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saira Riaz.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

SanaUllah, I., Khan, H.N., Saleha, M. et al. Free radical scavenging and antimicrobial activities of MW assisted sol-gel synthesized honey mediated zirconia. J Sol-Gel Sci Technol 103, 457–475 (2022). https://doi.org/10.1007/s10971-022-05817-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05817-w

Keywords

Navigation