Log in

Eclectic and economical synthesis, characterization of Li–Ba–Zn magnetic nanostructured mixed ferrites

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Augmentation in magnetic and dielectric properties of Li0.25Ba0.5-XZnXFe2.25O4 (where X = 0–0.5) suggest the effectiveness of barium doped in lower concentrations in lithium–zinc nanoferrites synthesized by solution combustion route. Different instrumental techniques have been employed to characterize their phase, size, and structural properties. X-ray diffraction analysis indicated that lithium–barium–zinc nanoferrites crystallize in the cubic spinel single phase with lattice parameter ~8.60 Å, while high-resolution transmission electron microscopic studies demonstrated the formation of cubic, uniformity, and crystalline nanoferrites. Mössbauer and magnetic parameters revealed the stability and magnetic character of doped ions with the phase transition from ferrimagnetism to superparamagnetism. Dielectric parameters as a function of frequency (100 Hz–5 MHz) and temperature (~500 °C) have also been studied which exhibited low dielectric losses as compared with other ferrite materials synthesized by conventional methods. This low loss values make these materials to be applicable in nanoelectronic devices and new generation wireless communication systems that can even work at high frequencies with derived high-temperature increments.

Highlights

  • Li–Ba–Zn (LBZ) nanoferrite system has been prepared by single-step solution combustion method to form homogenous nanoparticles.

  • X-ray diffraction studies compliment HRTEM analysis by depicting the nanocrystalline structure as well as uniform cubical-shaped morphology of the as-synthesized ferrite nanoparticles.

  • Magnetic studies suggest the interim transition from ferrimagnetism to superparamagnetism phase attributing to reduced particle size in the nano regime.

  • Exponential decrease in the Curie temperature with increase in Zn concentration has been observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Coey, JMD (2009) Magnetic materials. Magnetism and magnetic materials, vol. 413. 1st edn, Cambridge University Press, NY, p 423

  2. MacDaniel, T Randall, V (1997) Magneto-optical thin film recording materials in practice. Handbook of magneto-optical data recording: materials, subsystems, techniques. 1st edn, Noyes Publications, Westwood

  3. Zhu K, Ju Y, Xu J, Yang Z, Gao S, Hou Y (2018) Magnetic nanomaterials: chemical design, synthesis, and potential applications. Acc Chem Res 51:404–413

    CAS  Google Scholar 

  4. Spaldin, NA (2010) Ferrimagnetism. Magnetic material: fundamentals and applications. 2nd edn, Cambridge University Press, New York

  5. Lu AH, Salabas EL, Schuth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization and application. Angew Chem Int Ed 46:1222–1244

    CAS  Google Scholar 

  6. Jamon D, Donatini F, Siblini A, Royer F, Perzynski R, Cabuil, Neveu VS (2009) Experimental investigation on the magneto-optic effects of ferrofluids via dynamic measurements. J Magn Magn Mater 321:1148–1154

    CAS  Google Scholar 

  7. Jnaneshwara DM, Avadhani DN, Prasad BD, Nagabhushana BM, Nagabhushana H, Sharma SC, Prashantha SC, Shivakumara C (2014) Effect of zinc substitution on the nanocobalt ferrite powders for nanoelectronic devices. J Alloy Compd 587:50–58

    CAS  Google Scholar 

  8. Sugimoto M (1999) The past, present and future of ferrites. J Am Ceram Soc 82:269–280

    CAS  Google Scholar 

  9. Sanpo N, Berndt CC, Wen C, Wang J (2013) Transition metal-substituted cobalt ferrite nanoparticles for biomedical applications. Acta Biomater 9:5830–5837

    CAS  Google Scholar 

  10. Goya GF, Grazú V, Ibarra MR (2008) Magnetic nanoparticles for cancer therapy. Curr Nanosci 4:1–16

    CAS  Google Scholar 

  11. Jeun M, Moon SJ, Kobayashi H, Shin HY, Tomitaka A, Kim YJ, Takemura Y, Paek SH, Park KH, Chung KW, Bae S (2010) Effects of Mn concentration on the ac magnetically induced heating characteristics of superparamagnetic MnxZn1−xFe2O4 nanoparticles for hyperthermia. Appl Phys Lett 96:202511–202513

    Google Scholar 

  12. Beji Z, Hanini A, Smiri LS, Gavard J, Kacem K, Villain F, Greneche JM, Chau F, Ammar S (2010) Magnetic properties of Zn-substituted MnFe2O4 nanoparticles synthesized in polyol as potential heating agents for hyperthermia. Evaluation of their toxicity on endothelial cells. Chem Mater 22:5420–5429

    CAS  Google Scholar 

  13. Valenzuela, R (1994) Magnetic ceramics. 1st edn, Cambridge University Press, New York, p 3–23

  14. Sutka A, Menziskis G (2012) Sol–gel auto-combustion synthesis of spinel-type ferrite nanomaterials. Front Mater Sci 6:128–141

    Google Scholar 

  15. Ghone DM, Mathe VL, Patankar KK, Kaushik SD (2018) Microstructure, lattice strain, magnetic and magnetostriction properties of holmium substituted cobalt ferrites obtained by co-precipitation method. J Alloy Compds 739:52–61

    CAS  Google Scholar 

  16. Coppola P, Da Silva FG, Gomide G, Paula FL, Campos AF, Perzynski R, Kern C, Depeyrot J, Aquino R (2016) Hydrothermal synthesis of mixed zinc–cobalt ferrite nanoparticles: structural and magnetic properties. J Nanopart Res 18:138–152

    Google Scholar 

  17. Amirthavalli C, Thomas JM, Nagaraj K, Prince AA (2018) Facile room temperature CTAB-assisted synthesis of mesoporous nano-cobalt ferrites for enhanced magnetic behavior. Mater Res Bull 100:289–294

    CAS  Google Scholar 

  18. Randhawa BS, Singh J, Kaur H, Kaur M (2010) Preparation of nickel ferrite from thermolysis of nickel tris(malonato)ferrate(III) heptahydrate precursor. Ceram Int 36:1993–1996

    CAS  Google Scholar 

  19. Gharibshahian M, Nourbakhsh MS, Mirzaee O (2018) Evaluation of the superparamagnetic and biological properties of microwave assisted synthesized Zn & Cd doped CoFe2O4 nanoparticles via Pechini sol–gel method. J Sol-gel Sci Tech 85:684–692

    CAS  Google Scholar 

  20. Mouallem-Bahout M, Bertrand S, Pena O (2005) Synthesis and characterization of ZnxNi1–xFe2O4 spinels prepared by citrate precursor. J Solid State Chem 178:1080–1086

    CAS  Google Scholar 

  21. Manzoor A, Khan MA, Shahid M, Warsi MF (2017) Investigation of structural, dielectric and magnetic properties of Ho substituted nanostructured lithium ferrites synthesized via auto-citric combustion route. J Alloy Compd 710:547–556

    CAS  Google Scholar 

  22. Mazen SA, Abu-Elsaad NI, Nawara AS (2017) Studies on micro-structure and dc conductivity of polycrystalline Li0.5+0.5xSixFe2.5−1.5xO4 spinel ferrites. Power Technol 317:339–347

    CAS  Google Scholar 

  23. Jiang X, Wang W, Yu Z, Sun K, Lan Z, Zhang X, Harris VG (2017) Effects of iron deficiency on anisotropy and ferromagnetic resonance linewidth in Bi-doped Li-Zn ferrite. AIP Adv 7:056106–056110

    Google Scholar 

  24. Ghazanfar H, Khan MA, Anis-ur-Rehman M (2017) Temperature dependent dielectric studies on zinc doped lithium nanoferrites. J Supercond Nov Magn 30:813–817

    Google Scholar 

  25. Anis-ur-Rehman M, Saqib M, Abdullah A (2016) Temperature dependent electrical properties of co-precipitated magnesium doped lithium nanoferrites. J Mater Sci Mater Elect 27:5517–5525

    CAS  Google Scholar 

  26. Surzhikov AP, Lysenko EN, Vlasov VA, Malyshev AV, Korobeynikov MV, Mikhailenko MA (2016) Effect of powder compaction on radiation-thermal synthesis of lithium-titanium ferrites. IOP Conf Ser Mater Sci Eng 168(1–4):012090

    Google Scholar 

  27. Surzhikov AP, Lysenko EN, Vlasov VA, Malyshev AV, Korobeynikov MV, Mikhailenko MA (2016) Influence of reagents mixture density on theradiation-thermal synthesis of lithium-zinc ferrites IOP Conf Ser Mater Sci Eng 168(1–4):012093

    Google Scholar 

  28. Borhan N, Gheisari K, Shoushtari MZ (2016) Dielectric properties of nanocrystalline Zn-doped lithium ferrites synthesized by microwave-induced glycine–nitrate process. J Supercond Nov Magn 29:145–151

    CAS  Google Scholar 

  29. Varma A, Mukasyan AS, Rogachev AS, Manukyan KV (2016) Solution combustion synthesis of nanoscale materials. Chem Rev 116:14493–14586

    CAS  Google Scholar 

  30. Costa AC, Leite AM, Ferreira HS, Kiminami RH, Cava S, Gama L (2008) Brown pigment of the nanopowder spinel ferrite prepared by combustion reaction. J Eur Ceram Soc 28:2033–2037

    CAS  Google Scholar 

  31. Nakazawa T, Suzuki D, Sakuma H, Furuta N (2014) Comparison of signal enhancement by co-existing carbon and by co-existing bromine in inductively coupled plasma mass spectrometry. J Anal Spectrom 29:1299–1305

    CAS  Google Scholar 

  32. Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56:978–982

    CAS  Google Scholar 

  33. Saxena NK, Kumar N, Pourush PKS (2010) Microstrip rectangular patch antenna printed on LiTi ferrite with perpendicular DC magnetic biasing, J. Am Sci 6:46–51

    Google Scholar 

  34. Wang L, Chen B, Ma J, Cui G, Chen L (2018) Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density. Chem Soc Rev 47:6505–6602

    CAS  Google Scholar 

  35. Batra P, Gaba R, Issar U, Kakkar R(2013) Structures and stabilities of alkaline earth metal oxidenanoclusters: a DFT study J J Theor Chem 2013:1–14

    Google Scholar 

  36. Sun C, Sun K (2007) Preparation and characterization of magnesium-substituted LiZn ferrites by sol-gel method. Phys B 391:335–338

    CAS  Google Scholar 

  37. Rathod V, Anupama AV, Jali VM, Hiremath VA, Sahoo B (2017) Combustion synthesis, structure and magnetic properties of Li-Zn ferrite ceramic powders. Ceram Int 43:14431–14440

    CAS  Google Scholar 

  38. Williamson GK, Hall WH (1953) X-ray broadening from filed aluminium and wolfram. Acta Met 1:22–31

    CAS  Google Scholar 

  39. Kalyana Raju M, Ratna Raju M, Rajasekhar Babu K, Patnaik JRG, Samatha K (2015) Structural observations, density and porosity studies of Cu substituted Ni-Zn ferrite through standard ceramic technique. Chem Sci Trans 4:325–330

    Google Scholar 

  40. Moinuddin MK, Ramana Murthy S (1993) Elastic behavior of Mn-Zn ferrites. J Alloy Compd 194:105–107

    CAS  Google Scholar 

  41. Vegard L (1921) Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Z für Phys 5:17–26

    CAS  Google Scholar 

  42. Wang L, Wang X, Luo J, Wanjala BN, Wang C, Chernova NA, Engelhard MH, Liu Y, Bae IT, Zhong CJ (2010) Core−shell-structured magnetic ternary nanocubes. J Am Chem Soc 132(50):17686–17689

    CAS  Google Scholar 

  43. Harris VG (2012) Modern microwave ferrites. IEEE Trans Magn 48:1075–1104

    CAS  Google Scholar 

  44. Soreto S, Graça M, Valente M, Costa L (2017) Lithium ferrite: synthesis, structural characterization and electromagnetic properties. IntechOpen, London

  45. Datt G, Sen M, Raja M, Abhyankar A (2016) Observation of magnetic anomalies in one-step solvothermally synthesized nickel-cobalt ferrite nanoparticles. Nanoscale 8:5200–5213

    CAS  Google Scholar 

  46. Batoo KM, Salah D, Kumar G, Kumar A, Singh M, Abd El-sadek M, Mir FA, Imran A, Jameel DA (2016) Hyperfine interaction and tuning of magnetic anisotropy of Cu doped CoFe2O4 ferrite nanoparticles. J Magn Magn Mater 411:91–97

    CAS  Google Scholar 

  47. Shuro IH, Kuo H, Sasaki T, Hono K, Todaka Y, Umemoto M (2013) G-phase precipitation in austenitic stainless steel deformed by high pressure torsion. Mater Sci Eng A 552:194–198

    Google Scholar 

  48. Rezlescu N, Rezlescu E, Doroftei C, Popa PD (2004) Li and Ba ferrite nanoparticles prepared by self combustion. Phys Status Solidi (C) 1:3640–3643

    CAS  Google Scholar 

  49. Abdellatif MH, El-Komy GM, Azab AA, Salerno M (2018) Crystal field distortion of La3+ ion-doped Mn-Cr ferrite. J Magn Magn Mater 447:15–20

    CAS  Google Scholar 

  50. Mameli V, Musinu A, Ardu A, Ennas G, Peddis D, Niznansky D, Sangregorio C, Innocenti C, Thanh NT, Cannas C (2016) Studying the effect of Zn-substitution on the magnetic and hyperthermic properties of cobalt ferrite nanoparticles. Nanoscale 8:10124–10137

    CAS  Google Scholar 

  51. Neel LM (1948) Magnetic properties of ferrites; ferrimagnetism and antiferromagnetism. Ann de Phys 12:137–198

    Google Scholar 

  52. Nowik I (1969) Saturation moments of mixed ferrites: a simple theory. J Appl Phys 40:872

    CAS  Google Scholar 

  53. Verma S, Chand J, Sarveena, Singh M (2015) Study of Mӧssbauer and magnetic properties of Al3+ ions doped superparamagnetic nano ferrites. AIP Conf Proc 1665(1–3):130008

    Google Scholar 

  54. Babbar VK, Chandel JS (1995) Effect of Al+-substitution on the electrical and magnetic properties of Nil.05Sn0.05Fel.904 ferrites. Bull Mater Sci 18:997–1005

    CAS  Google Scholar 

  55. Chen JP, Sorensen CM, Klabunde KJ, Hadjipanayis GC, Devlin E, Kostikas A (1996) Size-dependent magnetic properties of MnFe2O4 fine particles synthesized by coprecipitation. Phys Rev B 54:9288–9296

    CAS  Google Scholar 

  56. Dawoud H, Mosa ZA, Shaat S (2019) Curie points and direct current electrical conductivity for inverse Li-spinel ferrite replaced by Zn2+ Ion. Am J Mater Sci Appl 7:13–18

    Google Scholar 

  57. Gawas SG, Meena SS, Bhatt P, Verenkar, Verenkar VMS (2018) Nanoscale driven structural changes and associated superparamagnetism in magnetically diluted Ni-Zn ferrites. Mater Chem Front 2:300–312

    CAS  Google Scholar 

  58. Yafet Y, Kittel C (1952) Antiferromegnetic arrangements in ferrites. Phys Rev 87:290–294

    CAS  Google Scholar 

  59. Wan DF, Ma XL (1994) The physics of magnetism. UESTC Press, Chengdu

  60. De Montferrand C, Lalatonne Y, Bonnin D, Lièvre N, Lecouvey M, Monod P, Russier V, Motte L (2012) Size-dependent nonlinear weak-field magnetic behavior of maghemite nanoparticles. Small 8:1945–1956

    Google Scholar 

  61. Stoner EC, Wohlfarth EP (1991) A mechanism of magnetic hysteresis in heterogeneous alloys. IEEE Trans Magn 27:3475–3518

    CAS  Google Scholar 

  62. Iwauchi K (1971) Dielectric properties of fine particles of Fe3O4 and some ferrites. Jpn J Appl Phys 10:1520–1528

    CAS  Google Scholar 

  63. Dawoud H, Mosa ZA, Shaat S (2017) Synthesis and AC properties of mixed Li-Zn ferrites. Int J Curr Res 9:59176–59179

    Google Scholar 

  64. Van der Zaag PJ, Van der Valk PJ, Rekveldt MT (1996) A domain size effect in magnetic hysteresis of Ni-Zn ferrites. Appl Phys Lett 69:2927–2929

    Google Scholar 

  65. Hench LL, West JK (1990) Principles of electronics ceramics. Wiley, New York, p 189

  66. Manikandan V, Vanitha A, Kumar ER, Chandrasekaran J (2017) Effect of sintering temperature on structural and dielectric properties of Sn substituted CuFe2O4 nanoparticles. J Magn Magn Mater 423:250–255

    CAS  Google Scholar 

  67. Hench LL, West JK (1990) Principles of electronics ceramics. Wiley, New York, p 209

  68. Maxwell JC (1873) Electricity and magnetism, vol 1. Oxford University Press, Oxford

  69. Wagner KW (1913) On the theory of imperfect dielectrics. Ann Phys (Leipz) 40:817–855

    Google Scholar 

  70. Koops CG (1951) On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys Rev 83:121–124

    CAS  Google Scholar 

  71. Pawar RA, Desai SS, Patange SM, Jadhav SS, Jadhav KM (2017) Inter-atomic bonding and dielectric polarization in Gd3+ incorporated Co-Zn ferrite nanoparticles. Phys B 510:74–79

    CAS  Google Scholar 

  72. Randhawa BS, Singh J (2013) Physico-chemical studies on synthesis, characterization, and magnetic properties of Li–Ca–Zn nanoferrites. J Nanopart Res 15:1351–1361

    Google Scholar 

  73. Soibam I, Phanjoubam S, Sharma HB, Sarma HNK, Laishram R, Prakash C (2008) Effect of Cobalt substitution on the dielectric properties of Li–Zn ferrites. Solid State Commun 148:399–402

    CAS  Google Scholar 

  74. Li LZ, Zhong XX, Wang R, Tu XQ, He L, Guo RD, Xu ZY (2017) Structural, magnetic and electrical properties in Al-substituted Ni-Zn-Co ferrite prepared via the sol-gel auto combustion method for LTCC technology. RSC Adv 7:39198–39203

    CAS  Google Scholar 

  75. Kolekar YD, Sanchez LJ, Ramana CV (2014) Dielectric relaxation and alternating current conductivity in manganese substituted cobalt ferrite. J Appl Phys 115(1–11):144106

    Google Scholar 

  76. Verma A, Thakur OP, Prakash C, Goel TC, Mendiratta RG (2005) Temperature dependence of electrical properties of nickel-zinc ferrites processed by citrate-precursor technique. Mat Sci Eng B 116:1–6

    Google Scholar 

  77. Batoo KM, Kumar S, Lee CG (2009) Study of dielectric and ac impedance properties of Ti doped Mn ferrites. Curr Appl Phys 9:1397–1406

    Google Scholar 

  78. Mangalaraja RV, Manohar P, Gnanam FD, Awano M (2004) Electrical and magnetic properties of Ni0.8Zn0.2Fe2O4/silica composite prepared by sol-gel method. J Mater Sci 39:2037–2042

    CAS  Google Scholar 

  79. Zheludev IS (2012) Physics of crystalline dielectrics, vol. 1 crystallography and spontaneous polarization. Springer Science & Business Media, New York

  80. Jnaneshwara DM, Avadhani DN, Prasad BD, Nagabhushana BM, Nagabhushana H, Sharma SC, Prashantha SC, Shivakumara C (2014) Effect of zinc substitution on the nanocobalt ferrite powders for nanoelectronic devices. J Alloy Compd 587:50–58

    CAS  Google Scholar 

  81. Arnold DP (2007) Review of microscale magnetic power generation. IEEE Trans Magn 43:3940–3951

    Google Scholar 

Download references

Acknowledgements

The authors are very thankful to the Defense Research and Development Organization (DRDO), New Delhi, India for financial support (Grant Sanction No. ERIP/ER/0703646/M/01/1038). We are also thankful to AIIMS, New Delhi for TEM studies. We would also like to thank Dr. Pandiyan Thangarasu and Dr. Ernest Erick Zeller for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jashanpreet Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, H., Huerta-Aguilar, C.A. & Singh, J. Eclectic and economical synthesis, characterization of Li–Ba–Zn magnetic nanostructured mixed ferrites. J Sol-Gel Sci Technol 94, 448–460 (2020). https://doi.org/10.1007/s10971-019-05191-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-019-05191-0

Keywords

Navigation