Log in

Protected activity of a phytase immobilized in mesoporous silica with benefits to plant phosphorus nutrition

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Phosphorus (P) is one of the main nutrients required for plant growth and is absorbed and metabolized in the form of orthophosphate ions (Pi). In agriculture, P is a major component of fertilizers. Forecast shortages in P mine stocks within the coming decades call for alternative sources of this element for agricultural use. In the present study, we explore the possibility of incorporating phytase near the plant root system. Phytase is an enzyme capable of mobilizing the main organic form of P as phytate, which can represent up to 90 % of the total P stock in soils. We report the immobilization of phytase in KIT-6 silica mesoporous materials with large pores of 8.6 nm. The enzymatic activity is localized in the porous network, and the main kinetic features of the free phytase appear to be maintained within the functional material (pHopt = 5–5.5 and T opt = 55 °C). Most importantly, the enzyme immobilized in the pores shows a higher temperature stability and appears to be protected from protease degradation. Finally, phytase-loaded KIT-6 proved efficient at hydrolyzing phytate and delivering inorganic P to growing Medicago truncatula plants, which accumulated this newly available P in both roots and shoots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cordell D, Drangert J-O, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Chang 19(2):292–305. doi:10.1016/j.gloenvcha.2008.10.009

    Article  Google Scholar 

  2. Withers PJA, Sylvester-Bradley R, Jones DL, Healey JR, Talboys PJ (2014) Feed the crop not the soil: rethinking phosphorus management in the food chain. Environ Sci Technol 48(12):6523–6530. doi:10.1021/es501670j

    Article  Google Scholar 

  3. Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116(2):447–453. doi:10.1104/pp.116.2.447

    Article  Google Scholar 

  4. Giaveno C, Celi L, Richardson AE, Simpson RJ, Barberis E (2010) Interaction of phytases with minerals and availability of substrate affect the hydrolysis of inositol phosphates. Soil Biol Biochem 42(3):491–498. doi:10.1016/j.soilbio.2009.12.002

    Article  Google Scholar 

  5. MacDonald GK, Bennett EM, Potter PA, Ramankutty N (2011) Agronomic phosphorus imbalances across the world’s croplands. Proc Natl Acad Sci USA 108(7):3086–3091. doi:10.1073/pnas.1010808108

    Article  Google Scholar 

  6. Richardson AE, George TS, Jakobsen I, Simpson RJ Plant utilization of inositol phosphates. In, 2007. CAB International, pp 242-260. doi:10.1079/9781845931520.0242

  7. Hayes JE, Simpson RJ, Richardson AE (2000) The growth and phosphorus utilisation of plants in sterile media when supplied with inositol hexaphosphate, glucose 1-phosphate or inorganic phosphate. Plant Soil 220(1–2):165–174. doi:10.1023/a:1004782324030

    Article  Google Scholar 

  8. Vandenberg GW, Scott SL, Sarker PK, Dallaire V, de la Noue J (2011) Encapsulation of microbial phytase: effects on phosphorus bioavailability in rainbow trout (Oncorhynchus mykiss). Anim Feed Sci Tech 169(3–4):230–243. doi:10.1016/j.anifeedsci.2011.07.001

    Article  Google Scholar 

  9. Kleitz F, Kim TW, Ryoo R (2005) Design of mesoporous silica at low acid concentrations in triblock copolymer-butanol-water systems. Bull Korean Chem Soc 26(11):1653–1668

    Article  Google Scholar 

  10. Falahati M, Saboury AA, Ma’mani L, Shafiee A, Rafieepour HA (2012) The effect of functionalization of mesoporous silica nanoparticles on the interaction and stability of confined enzyme. Int J Biol Macromol 50(4):1048–1054. doi:10.1016/j.ijbiomac.2012.02.032

    Article  Google Scholar 

  11. Zimmerman AR, Chorover J, Goyne KW, Brantley SL (2004) Protection of mesopore-adsorbed organic matter from enzymatic degradation. Environ Sci Technol 38(17):4542–4548. doi:10.1021/es035340+

    Article  Google Scholar 

  12. Zhou C, Jiang B, Sheng ZC, Zhu SM, Shen SB (2011) Covalent crowding strategy for trypsin confined in accessible mesopores with enhanced catalytic property and stability. Korean J Chem Eng 28(3):853–859. doi:10.1007/s11814-010-0412-3

    Article  Google Scholar 

  13. Kleitz F, Choi SH, Ryoo R (2003) Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chem Commun 17:2136–2137. doi:10.1039/b306504a

    Article  Google Scholar 

  14. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism. Nature 359(6397):710–712. doi:10.1038/359710a0

    Article  Google Scholar 

  15. Galarneau A, Nader M, Guenneau F, Di Renzo F, Gedeon A (2007) Understanding the stability in water of mesoporous SBA-15 and MCM-41. J Phys Chem C 111(23):8268–8277. doi:10.1021/jp068526e

    Article  Google Scholar 

  16. Galarneau A, Driole MF, Petitto C, Chiche B, Bonelli B, Armandi M, Onida B, Garrone E, di Renzo F, Fajula F (2005) Effect of post-synthesis treatment on the stability and surface properties of MCM-48 silica. Microporous Mesoporous Mater 83(1–3):172–180. doi:10.1016/j.micromeso.2005.03.020

    Article  Google Scholar 

  17. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity (Recommendations 1984). Pure Appl Chem 57(4):603–619. doi:10.1351/pac198557040603

    Article  Google Scholar 

  18. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319. doi:10.1021/ja01269a023

    Article  Google Scholar 

  19. Laborde C, Chemardin P, Bigey F, Combarnous Y, Moulin G, Boze H (2004) Overexpression of ovine leptin in Pichia pastoris: physiological yeast response to leptin production and characterization of the recombinant hormone. Yeast 21(3):249–263. doi:10.1002/yea.1073

    Article  Google Scholar 

  20. Brunel L, Neugnot V, Landucci L, Boze WN, Moulin G, Bigey F, Dubreucq E (2004) High-level expression of Candida parapsilosis lipase/acyltransferase in Pichia pastoris. J Biotechnol 111(1):41–50. doi:10.1016/j.jbiotec.2004.03.007

    Article  Google Scholar 

  21. Wodzinski RJ, Ullah AHJ (1996) Phytase. In: Neidleman SL, Laskin AI (eds) Advances in Applied Microbiology, vol 42, pp 263–302. doi:10.1016/s0065-2164(08)70375-7

  22. Nagashima T, Tange T, Anazawa H (1999) Dephosphorylation of phytate by using the Aspergillus niger phytase with a high a affinity for phytate. Appl Environ Microbiol 65(10):4682–4684

    Google Scholar 

  23. Wyss M, Pasamontes L, Friedlein A, Remy R, Tessier M, Kronenberger A, Middendorf A, Lehmann M, Schnoebelen L, Rothlisberger U, Kusznir E, Wahl G, Muller F, Lahm HW, Vogel K, van Loon A (1999) Biophysical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): molecular size, glycosylation pattern, and engineering of proteolytic resistance. Appl Environ Microbiol 65(2):359–366

    Google Scholar 

  24. Ohno T, Zibilske LM (1991) Determination of low concentrations of phosphorus in soil extracts using malachite green. Soil Sci Soc Am J 55(3):892–895

    Article  Google Scholar 

  25. Tijskens LMM, Greiner R, Biekman ESA, Konietzny U (2001) Modeling the effect of temperature and pH on activity of enzymes: the case of phytases. Biotechnol Bioeng 72(3):323–330. doi:10.1002/1097-0290(20010205)72:3<323:aid-bit9>3.0.co;2-i

    Article  Google Scholar 

  26. Iler RK (1979) The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry. vol Copyright (C) 2014 American Chemical Society (ACS). All Rights Reserved. Wiley

  27. Hossain KZ, Monreal CM, Sayari A (2008) Adsorption of urease on PE-MCM-41 and its catalytic effect on hydrolysis of urea. Colloids and Surf B: Biointerfaces 62(1):42–50. doi:10.1016/j.colsurfb.2007.09.016

    Article  Google Scholar 

  28. Huguet T, Prosperi JM (1996) Medicago truncatula : a legume model-plant. In: Genier G, Prosperi JM (eds) The genus medicago in the mediterranean region: current situation and prospects in research, Cahiers Options Méditerranéennes, vol 18. CIHEAM, Zaragoza, pp 171–175

    Google Scholar 

  29. Ali MA, Louche J, Legname E, Duchemin M, Plassard C (2009) Pinus pinaster seedlings and their fungal symbionts show high plasticity in phosphorus acquisition in acidic soils. Tree Physiol (Oxford, UK) 29 (Copyright (C) 2014 American Chemical Society (ACS). All Rights Reserved): 1587–1597. doi:10.1093/treephys/tpp088

  30. Oakley AJ (2010) The structure of Aspergillus niger phytase phyA in complex with a phytate mimetic. Biochem Biophys Res Commun 397(4):745–749. doi:10.1016/j.bbrc.2010.06.024

    Article  Google Scholar 

  31. Van der Voort P, Benjelloun M, Vansant EF (2002) Rationalization of the synthesis of SBA-16: controlling the micro- and mesoporosity. J Phys Chem B 106(35):9027–9032. doi:10.1021/jp0261152

    Article  Google Scholar 

  32. Zhao DY, Huo QS, Feng JL, Chmelka BF, Stucky GD (1998) Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J Am Chem Soc 120(24):6024–6036. doi:10.1021/ja974025i

    Article  Google Scholar 

  33. Bass JD, Grosso D, Boissiere C, Belamie E, Coradin T, Sanchez C (2007) Stability of mesoporous oxide and mixed metal oxide materials under biologically relevant conditions. Chem Mater 19(17):4349–4356. doi:10.1021/cm071305g

    Article  Google Scholar 

  34. Kosmulski M (2009) pH-dependent surface charging and points of zero charge. IV. Update and new approach. J Colloid Interface Sci 337(2):439–448. doi:10.1016/j.jcis.2009.04.072

    Article  Google Scholar 

  35. Illanes A, Gonzalez JM, Gomez JM, Valencia P, Wilson L (2010) Diffusional restrictions in glyoxyl-agarose immobilized penicillin G acylase of different particle size and protein loading. Electron J Biotechnol 13 (1). doi:10.2225/vol13-issue1-fulltext-12

  36. **ao K, Harrison MJ, Wang ZY (2005) Transgenic expression of a novel M. truncatula phytase gene results in improved acquisition of organic phosphorus by Arabidopsis. Planta 222(1):27–36. doi:10.1007/s00425-005-1511-y

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Jean-Claude Yvin and Timac-Agro International for financial support (contract # 061021) of the collaborative project, the “Halle de Biotechnologies” (UMR IATE/UMR SPO, Montpellier, France) for the production of the recombinant phytase. Christophe Trouillefou is the recipient of a Ph.D. fellowship (CIFRE 98/2011) from TIMAC-Agro International and ANRT. We are grateful to Marie-France Driole for her help in the synthesis of the mesoporous materials, and to Francesco Di Renzo for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christophe Marcel Trouillefou or Emmanuel Belamie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trouillefou, C.M., Le Cadre, E., Cacciaguerra, T. et al. Protected activity of a phytase immobilized in mesoporous silica with benefits to plant phosphorus nutrition. J Sol-Gel Sci Technol 74, 55–65 (2015). https://doi.org/10.1007/s10971-014-3577-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3577-0

Keywords

Navigation