Log in

Diglycolamic acid coated TiO2 microspheres for efficient uptake of uranium (VI) from aqueous solutions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this study, we report the facile synthesis of diglycolamic acid (DGA)-coated titanium dioxide (TiO2) microspherical nano-particles (TMP-DGA) for effective extraction of uranium (U(VI)) from aqueous solutions. The physical properties of the as-prepared adsorbents were carefully investigated using BET and XRD, and the presence of DGA groups was verified using FTIR, TG–DTA, and SEM–EDAX. Batch experiments were performed to assess the extraction efficiency of U(VI). The Langmuir adsorption isotherm capacity of TMP-DGA towards U(VI) was determined to be 175.87 mg g−1 at pH 6, which is substantially greater than the maximum adsorption capacity of commercial TiO2. The addition of DGA groups to TiO2 enhanced the number of active sites and enabled excellent coordination with the U(VI) species. In the presence of several contemporaneous metal ions, it has also displayed strong selectivity towards U(VI). The plausible mechanism include electrostatic attraction between U(VI) species and the DGA groups. The results of these studies show that the reported material has a remarkable ability to be utilized as an adsorbent for the removal of U(VI) from aqueous medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Abbreviations

TMP:

Titanium dioxide micro-spherical nanoparticles

DGA:

Diglycolamic acid

Co :

Initial concentration of metal ion in mg L1

Ct :

Concentration of metal ion at time ‘t’ in mg L1

Ce :

Concentration of metal ion at equilibrium in mg L1

m:

Weight of the adsorbent in g

V:

Volume of solution in L

R:

Universal gas constant (J K1 mol1)

R2 :

Correlation coefficient

T:

Temperature (K)

t:

Adsorption time (min)

References

  1. Brook BW, Alonso A, Meneley DA, Misak J, Blees T, vanErp JB (2014) Why nuclear energy is sustainable and has to be part of the energy mix. Sustain Mater Technol 1–2:8–16. https://doi.org/10.1016/j.susmat.2014.11.001

    Article  Google Scholar 

  2. Saha A, Neogy S, Shafeeq MPP, Prajapat CL, Deb SB, Saxena MK (2021) Rapid and selective magnetic separation of uranium in seawater and groundwater using novel phosphoramidate functionalized citrate-Fe3O4@Ag nanoparticles. Talanta 231:122372. https://doi.org/10.1016/j.talanta.2021.122372

    Article  CAS  PubMed  Google Scholar 

  3. Monnet A, Gabriel S, Percebois J (2017) Analysis of the long-term availability of uranium: the influence of dynamic constraints and market competition. Energy Policy 105:98–107. https://doi.org/10.1016/j.enpol.2017.02.010

    Article  Google Scholar 

  4. Balaram V, Rani A, Rathore DPS (2022) Uranium in groundwater in parts of India and world: a comprehensive review of sources, impact to the environment and human health, analytical techniques, and mitigation technologies. Geosystems Geoenviron 1:100043. https://doi.org/10.1016/j.geogeo.2022.100043

    Article  Google Scholar 

  5. Smedley PL, Kinniburgh DG (2023) Uranium in natural waters and the environment: distribution, speciation and impact. Appl Geochem 148:105534. https://doi.org/10.1016/j.apgeochem.2022.105534

    Article  CAS  Google Scholar 

  6. Regenspurg S, Schild D, Schäfer T, Huber F, Malmström ME (2009) Removal of uranium(VI) from the aqueous phase by iron(II) minerals in presence of bicarbonate. Appl Geochem 24:1617–1625. https://doi.org/10.1016/j.apgeochem.2009.04.029

    Article  CAS  Google Scholar 

  7. Niu CP, Zhang CR, Cui WR, Yi SM, Liang RP, Qiu JD (2022) A conveniently synthesized redox-active fluorescent covalent organic framework for selective detection and adsorption of uranium. J Hazard Mater 425:127951. https://doi.org/10.1016/j.jhazmat.2021.127951

    Article  CAS  PubMed  Google Scholar 

  8. Kukkonen E, Virtanen EJ, Moilanen JO (2022) Alpha; -aminophosphonates, -phosphinates, and -phosphine oxides as extraction and precipitation agents for rare earth metals, thorium, and uranium: a review. Molecules 27:3465. https://doi.org/10.3390/molecules27113465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen F, Lv M, Ye Y, Miao S, Tang X, Liu Y, Liang B, Qin Z, Chen Y, He Z, Wang Y (2022) Insights on uranium removal by ion exchange columns: the deactivation mechanisms, and an overlooked biological pathway. Chem Eng J 434:134708. https://doi.org/10.1016/j.cej.2022.134708

    Article  CAS  Google Scholar 

  10. Yuan L, Sun M, Liao X, Zhao Y, Chai Z, Shi W (2014) Solvent extraction of U(VI) by trioctylphosphine oxide using a room-temperature ionic liquid. Sci China Chem 57:1432–1438. https://doi.org/10.1007/s11426-014-5194-8

    Article  CAS  Google Scholar 

  11. Chen L, Hang J, Chen B, Kang J, Yan Z, Wang Z, Zhang Y, Chen S, Wang Y, ** Y, **a C (2023) Photocatalytic uranium removal from basic effluent by porphyrin-Ni COF as the photocatalyst. Chem Eng J 454:140378. https://doi.org/10.1016/j.cej.2022.140378

    Article  CAS  Google Scholar 

  12. Liu T, Yuan J, Zhang B, Liu W, Lin L, Meng Y, Yin S, Liu C, Luan F (2019) Removal and recovery of uranium from groundwater using direct electrochemical reduction method: performance and implications. Environ Sci Technol 53:14612–14619. https://doi.org/10.1021/acs.est.9b06790

    Article  CAS  PubMed  Google Scholar 

  13. Tetteh EK, Rathilal S, Asante-Sackey D, Chollom MN (2021) Prospects of synthesized magnetic TiO2-based membranes for wastewater treatment: a review. Materials (Basel) 14:3524. https://doi.org/10.3390/ma14133524

    Article  CAS  PubMed  Google Scholar 

  14. Ilaiyaraja P, Kumar Das T, Mocherla PSV, Sudakar C (2017) Well-connected microsphere-nanoparticulate TiO2 composites as high performance photoanode for dye sensitized solar cell. Sol Energy Mater Sol Cells 169:86–97. https://doi.org/10.1016/j.solmat.2017.05.001

    Article  CAS  Google Scholar 

  15. Azer BB, Gulsaran A, Pennings JR, Saritas R, Kocer S, Bennett JL, Abhang YD, Pope MA, Abdel-Rahman E, Yavuz M (2022) A review: TiO2 based photoelectrocatalytic chemical oxygen demand sensors and their usage in industrial applications. J Electroanal Chem 918:116466. https://doi.org/10.1016/j.jelechem.2022.116466

    Article  CAS  Google Scholar 

  16. Ikreedeegh RR, Hossen MA, Tahir M, Aziz AA (2024) A comprehensive review on anodic TiO2 nanotube arrays (TNTAs) and their composite photocatalysts for environmental and energy applications: fundamentals, recent advances and applications. Coord Chem Rev 499:215495. https://doi.org/10.1016/j.ccr.2023.215495

    Article  CAS  Google Scholar 

  17. Langa C, Hintsho-Mbita NC (2023) Plant and bacteria mediated synthesis of TiO2 NPs for dye degradation in water: a review. Chem Phys Impact 7:100293. https://doi.org/10.1016/j.chphi.2023.100293

    Article  Google Scholar 

  18. Jaber GS, Dhaif SS, Hussian TSA, Ibrahim NA, Arifiyanto A (2023) Enhancing the prodigiosin pigment by adding Ag\TiO2 synergism for antibacterial activity. Biocatal Agric Biotechno 54:102900. https://doi.org/10.1016/j.bcab.2023.102900

    Article  CAS  Google Scholar 

  19. Priya S, Ilaiyaraja P, Priyadarshini N (2022) Fibrous TiO2 exhibiting efficient U(VI) adsorption from aqueous solution. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2022.2047182

    Article  Google Scholar 

  20. Salamat S, Younesi H, Bahramifar N (2017) Synthesis of magnetic core–shell Fe3O4@TiO2 nanoparticles from electric arc furnace dust for photocatalytic degradation of steel mill wastewater. RSC Adv 7:19391–19405. https://doi.org/10.1039/C7RA01238A

    Article  CAS  Google Scholar 

  21. Peng L, Ni Y, Wei X, Hanyu W, Duoqiang P, Wangsuo W (2017) Removal of U(VI) from aqueous solution using TiO2 modified β-zeolite. Radiochim Acta 105:1005–1013. https://doi.org/10.1515/ract-2017-2765

    Article  CAS  Google Scholar 

  22. Wen J, Li Q, Li H, Chen M, Hu S, Cheng H (2018) Nano-TiO2 imparts amidoximated wool fibers with good antibacterial activity and adsorption capacity for uranium(VI) recovery. Ind Eng Chem Res 57:1826–1833. https://doi.org/10.1021/acs.iecr.7b04380

    Article  CAS  Google Scholar 

  23. Wang J, Zhang R, Lu Z, Ai Y (2020) Experimental and theoretical studies of spherical β-cyclodextrin modified titanium dioxide composites for uranium removal. Ecol Eng 149:105835. https://doi.org/10.1016/j.ecoleng.2020.105835

    Article  Google Scholar 

  24. Wang Y, Yang Y, Wu Y, Li J, Hu B, Cai Y, Yuan L, Feng W (2023) Selective complexation and separation of uranium(VI) from thorium(IV) with new tetradentate N, O-hybrid diamide ligands: synthesis, extraction, spectroscopy, and crystallographic studies. Inorg Chem 62:4922–4933. https://doi.org/10.1021/acs.inorgchem.2c04384

    Article  CAS  PubMed  Google Scholar 

  25. Ilaiyaraja P, Deb AKS, Ponraju D, Ali SM, Venkatraman B (2017) Surface engineering of PAMAM-SDB chelating resin with diglycolamic acid (DGA) functional group for efficient sorption of U(VI) and Th(IV) from aqueous medium. J Hazard Mater 328:1–11. https://doi.org/10.1016/j.jhazmat.2017.01.001

    Article  CAS  PubMed  Google Scholar 

  26. Gatabi MP, Moghaddam HM, Ghorbani M (2016) Point of zero charge of maghemite decorated multiwalled carbon nanotubes fabricated by chemical precipitation method. J Mol Liq 216:117–125. https://doi.org/10.1016/j.molliq.2015.12.087

    Article  CAS  Google Scholar 

  27. Savvin SB (1961) Analytical use of arsenazo III: determination of thorium, zirconium, uranium and rare earth elements. Talanta 8:673–685. https://doi.org/10.1016/0039-9140(61)80164-1

    Article  CAS  Google Scholar 

  28. Neolaka YAB, Riwu AAP, Aigbe UO, Ukhurebor KE, Onyancha RB, Darmokoesoemo H, Kusuma HS (2023) Potential of activated carbon from various sources as a low-cost adsorbent to remove heavy metals and synthetic dyes. Results Chem 5:100711. https://doi.org/10.1016/j.rechem.2022.100711

    Article  CAS  Google Scholar 

  29. Neolaka YAB, Supriyanto G, Kusuma HS (2018) Adsorption performance of Cr(VI)-imprinted poly(4-VP-co-MMA) supported on activated Indonesia (Ende-Flores) natural zeolite structure for Cr(VI) removal from aqueous solution. J Environ Chem Eng 6:3436–3443. https://doi.org/10.1016/j.jece.2018.04.053

    Article  CAS  Google Scholar 

  30. Das TK, Ilaiyaraja P, Mocherla PSV, Bhalerao GM, Sudakar C (2016) Influence of surface disorder, oxygen defects and bandgap in TiO2 nanostructures on the photovoltaic properties of dye sensitized solar cells. Sol Energy Mater Sol Cells 144:194–209. https://doi.org/10.1016/j.solmat.2015.08.036

    Article  CAS  Google Scholar 

  31. Priya S, Ilaiyaraja P, Priyadarshini N, Subalekha N (2023) Effective removal of uranium (VI) using magnetic acid functionalized Fe3O4@TiO2 nanocomposite from aqueous solutions. Process Saf Environ Prot 178:480–493

    Article  CAS  Google Scholar 

  32. Khatooni H, Peighambardoust SJ, Foroutan R, Mohammadi R, Ramavandi B (2022) Adsorption of methylene blue using sodium carboxymethyl cellulose-g-poly (acrylamide-co-methacrylic acid)/cloisite 30B nanocomposite hydrogel. J Polym Environ 31:297–311

    Article  Google Scholar 

  33. Dhanasekaran A, Suresh G, Ilaiyaraja P, Priyadarshini N, Dhanaraj K, Vimalathithan RM (2023) Bio-waste derived hydroxyapatite nano rods for U(VI) uptake from aqueous medium. J Radioanal Nucl Chem 332:3235–3247

    Article  CAS  Google Scholar 

  34. Al-Ghamdi AA, Galhoum AA, Ahmed A, Al-Turki YA, Al-Amri AM, Wae S (2022) Mesoporous magnetic cysteine functionalized chitosan nanocomposite for selective uranyl ions sorption: experimental, structural characterization, and mechanistic studies. Polymers 14:2568. https://doi.org/10.3390/polym14132568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tatarchuk T, Shyichuk A, Mironyuk I, Naushad Mu (2019) A review on removal of uranium (VI) ions using titanium dioxide based sorbents. J Mol Liq 293:111563. https://doi.org/10.1016/j.molliq.2019.111563

    Article  CAS  Google Scholar 

  36. Abbasizadeh S, Keshtkar AR, Mousavian MA (2014) Sorption of heavy metal ions from aqueous solution by a novel cast PVA/TiO2 nanohybrid adsorbent functionalized with amine groups. J Ind Eng Chem 20:1656–1664. https://doi.org/10.1016/J.JIEC.2013.08.013

    Article  CAS  Google Scholar 

  37. Wang J, Ma R, Jiang Z (2023) The preparation of dodecyl trimethyl ammonium bromide modified titanium dioxide for the removal of uranium. Environ Sci Pollut Res 30:30548–30556. https://doi.org/10.1007/s11356-022-24090-6

    Article  CAS  Google Scholar 

  38. Shu J, Liu J, Shi S, Wang J, Wu P, Cheng Z, Liu N, Lan T (2023) Highly efficient sorption of U(VI) on TiO2 nanosheets supported by amidoxime polyacrylonitrile in a variety of multicarbonate solutions. Sep Purif Technol 313:123491. https://doi.org/10.1016/j.seppur.2023.123491

    Article  CAS  Google Scholar 

  39. Zhang H, Dai Z, Sui Y, Xue J, Ding D (2018) Adsorption of U(VI) from aqueous solution by magnetic core-dual shell Fe3O4@PDA@TiO2. J Radioanal Nucl Chem 317:613–624. https://doi.org/10.1007/s10967-018-5923-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank Sri Sivasubramaniya Nadar (SSN) Trust (Project File Number: SSN/IFFP/JANUARY 2019/1-16/16) for providing the necessary infrastructure and the financial support to execute this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Priyadarshini.

Ethics declarations

Conflict of interest

All authors declare no conflict of interests regarding this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priya, S., Priyadarshini, N. & Ilaiyaraja, P. Diglycolamic acid coated TiO2 microspheres for efficient uptake of uranium (VI) from aqueous solutions. J Radioanal Nucl Chem (2024). https://doi.org/10.1007/s10967-024-09622-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10967-024-09622-3

Keywords

Navigation