Log in

Kinetics and mechanism of Ce deposition in LiCl–KCl molten salt: a computational and experimental study

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The present study developed a finite element model to study the electrodeposition process of Ce(III) from LiCl–KCl eutectic molten salt for pyroprocessing of spent nuclear fuel. The input parameters for the model were extracted experimentally through electrochemical testing, including cyclic voltammetry, open circuit potential, linear polarization, etc. Based on the developed model, the electric field, current density, concentration and deposition thickness of Ce on the electrode during electrodeposition process were investigated. This study visualized the electrochemical deposition process of Ce in molten salt, which will not only benefit the optimization of the pyroprocessing system, but also help achieve its application into industry scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Wei Y (2011) Progress and discussion on chemical separation technologies for nuclear fuel reprocessing abroad. Prog Chem 23(7):1272

    CAS  Google Scholar 

  2. Wang Y, Zhou W, Zhang J (2016) Investigation of concentration-dependence of thermodynamic properties of lanthanum, yttrium, scandium and terbium in eutectic LiCl-KCl molten salt. J Nucl Mater 478:61–73

    Article  CAS  Google Scholar 

  3. Inoue T (2002) Actinide recycling by pyro-process with metal fuel FBR for future nuclear fuel cycle system. Prog Nucl Energy 40(3–4):547–554

    Article  CAS  Google Scholar 

  4. Yoon D, Phongikaroon S (2015) Electrochemical properties and analyses of CeCl3 in LiCl-KCl eutectic salt. J Electrochem Soc 162(10):E237

    Article  CAS  Google Scholar 

  5. Laidler JJ, Miller WE, Johnson TR, Ackerman JP, Battles JE (1992) IFR fuel cycle--pyroprocess development (No. ANL/CMT/CP-77849; CONF-9211114–1). Argonne National Lab, IL (United States)

  6. Laidler JJ, Battles JE, Miller WE, Ackerman JP, Carls EL (1997) Development of pyroprocessing technology. Prog Nucl Energy 31(1–2):131–140

    Article  CAS  Google Scholar 

  7. Inoue T, Koch L (2008) Development of pyroprocessing and its future direction. Nucl Eng Technol 40(3):183–190

    Article  CAS  Google Scholar 

  8. Song KC, Lee HS, Hur JM, Kim JG, Ahn DH, Cho YZ (2010) Status of pyroprocessing technology development in Korea. Nucl Eng Technol 42(2):131–144

    Article  CAS  Google Scholar 

  9. Bagri P, Simpson MF (2016) Determination of activity coefficient of lanthanum chloride in molten LiCl-KCl eutectic salt as a function of cesium chloride and lanthanum chloride concentrations using electromotive force measurements. J Nucl Mater 482:248–256

    Article  CAS  Google Scholar 

  10. Cumulative Fission Yields. www-nds.iaea.org. IAEA. https://www-nds.iaea.org/sgnucdat/c3.htm

  11. Qi X, Zhu H (2005) Reduction behavior of cerium (III) ions in NaCl-2CsCl melt. Rare Met 24(1):8–14

    CAS  Google Scholar 

  12. Wang CS, Liu Y, He H, Gao FX, Liu LS, Chang SW (2013) Electrochemical separation of uranium and cerium in molten LiCl–KCl. J Radioanal Nucl Chem 298:581–586

    Article  CAS  Google Scholar 

  13. Jiang K, Shao Y, Smolenski V, Novoselova A, Liu Q, Xu M (2020) Electrochemical study of reduction Ce (III) ions and production of high purity metallic cerium by electrorefining in fused LiCl-KCl eutectic. J Electroanal Chem 878:114691

    Article  CAS  Google Scholar 

  14. Xu X, Shi T, Ding Y, Zhang X, Song J, Zhang H (2023) Effects of F- on the electrochemical properties and electrodeposition nucleation mechanism of Ce (III) in LiCl-KCl melts. J Electroanal Chem 945:117677

    Article  CAS  Google Scholar 

  15. Zhang M, Wang J, Cai Y, Jiao C, Adede SO (2019) Electroanalytical and electrodeposited simulation of Ce3+ in molten LiCl-KCl. J Electrochem Soc 166(15):D868

    Article  CAS  Google Scholar 

  16. Kim SH, Park SB, Lee SJ, Kim JG, Lee HS, Lee JH (2013) Computer-assisted design and experimental validation of multielectrode electrorefiner for spent nuclear fuel treatment using a tertiary model. Nucl Eng Des 257:12–20

    Article  CAS  Google Scholar 

  17. Kim KR, Choi SY, Ahn DH, Paek S, Park BG, Lee HS (2009) Computational analysis of a molten-salt electrochemical system for nuclear waste treatment. J Radioanal Nucl Chem 282:449–453

    Article  CAS  Google Scholar 

  18. Berzins T, Delahay P (1953) Oscillographic polarographic waves for the reversible deposition of metals on solid electrodes. J Am Chem Soc 75(3):555–559

    Article  CAS  Google Scholar 

  19. Shaltry MR, Hoover RO, Fredrickson GL (2020) Kinetic parameters and diffusivity of uranium in FLiNaK and ClLiK. J Electrochem Soc 167(11):116502

    Article  CAS  Google Scholar 

  20. Belov I, Zanella C, Edström C, Leisner P (2016) Finite element modeling of silver electrodeposition for evaluation of thickness distribution on complex geometries. Mater Des 90:693–703

    Article  CAS  Google Scholar 

  21. Liang D, Liu Z, Hilty RD, Zangari G (2012) Electrodeposition of Ag–Ni films from thiourea complexing solutions. Electrochim Acta 82:82–89

    Article  CAS  Google Scholar 

  22. Schlesinger M, Paunovic M (2014) Modern electroplating, vol 52. Wiley, New Yark

    Google Scholar 

  23. Kissinger PT, Heineman WR (1983) Cyclic voltammetry. J Chem Educ 60(9):702

    Article  CAS  Google Scholar 

  24. Zhao D, Yan L, Jiang T, Peng S, Yue B (2022) Multiphysics simulation study of the electrorefining process of spent nuclear fuel from LiCl-KCl eutectic molten salt. J Electrochem Soc 169(7):072501

    Article  CAS  Google Scholar 

  25. Zhang M, Wang H, Han W, Zhang M, Li Y, Wang Y (2014) Electrochemical extraction of cerium and formation of Al-Ce alloy from CeO2 assisted by AlCl3 in LiCl-KCl melts. Sci China Chem 57:1477–1482

    Article  CAS  Google Scholar 

  26. Kang D (2018) Multi-species multi-physics modeling and validation of hydrodynamic electrochemical system for used nuclear fuel. Nan**g, Jiang Su.

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from Project Number 12305395 by the National Natural Science Foundation of China, Project Number 21ZR1435400 by the Science and Technology Commission of Shanghai Municipality, and Young Elite Scientists Sponsorship Program (YESS20200327) by China Association for Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wentao Zhou or Yafei Wang.

Ethics declarations

Conflict of interest

All authors declare that they have no known competing financial interests or personal relationships in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Zhang, X., Xu, X. et al. Kinetics and mechanism of Ce deposition in LiCl–KCl molten salt: a computational and experimental study. J Radioanal Nucl Chem (2024). https://doi.org/10.1007/s10967-024-09567-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10967-024-09567-7

Keywords

Navigation