Log in

In vitro and in vivo evaluation of a novel anti-EGFR antibody labeled with 89Zr and 177Lu

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

There is an urgent need to develop more specific targeted therapies for lung cancer treatment due to the its low survival rate. EGFR is a transmembrane tyrosine kinase protein that is overexpressed in lung cancer. Herein, a novel anti-EGFR antibody, 5A7, was modified with chelators for zirconium-89 (89Zr) and lutetium-177 (177Lu) labeling. The radiolabeled 5A7 could specifically bind to A549 tumor according to the in vitro and in vivo evaluation. Furthermore, the 177Lu labeled 5A7 antibody could inhibit tumor growth significantly in A549 bearing xenografts. The radiolabeled anti-EGFR 5A7 antibody has high potential to be used for PET imaging and radiotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Min HY, Lee HY (2021) Mechanisms of resistance to chemotherapy in non-small cell lung cancer. Arch Pharm Res. https://doi.org/10.1007/s12272-021-01312-y

    Article  PubMed  Google Scholar 

  2. Shibata T, Kawano T, Nagayasu H, Okumura K, Arisue M, Hamada J, Takeichi N, Hosokawa M (1996) Enhancing effects of epidermal growth factor on human squamous cell carcinoma motility and matrix degradation but not growth. Tumour Biol 17(3):168–175

    Article  CAS  Google Scholar 

  3. Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2(2):127–137

    Article  CAS  Google Scholar 

  4. Goldman CK, Kim J, Wong WL, King V, Brock T, Gillespie GY (1993) Epidermal growth factor stimulates vascular endothelial growth factor production by human malignant glioma cells: a model of glioblastoma multiforme pathophysiology. Mol Biol Cell 4(1):121–133

    Article  CAS  Google Scholar 

  5. Pavelic K, Banjac Z, Pavelic J, Spaventi S (1993) Evidence for a role of EGF receptor in the progression of human lung carcinoma. Anticancer Res 13(4):1133–1137

    CAS  PubMed  Google Scholar 

  6. Chung CH, Ely K, McGavran L, Varella-Garcia M, Parker J, Parker N, Jarrett C, Carter J, Murphy BA, Netterville J, Burkey BB, Sinard R, Cmelak A, Levy S, Yarbrough WG, Slebos RJ, Hirsch FR (2006) Increased epidermal growth factor receptor gene copy number is associated with poor prognosis in head and neck squamous cell carcinomas. J Clin Oncol 24(25):4170–4176

    Article  CAS  Google Scholar 

  7. Humblet Y (2004) Cetuximab: an IgG(1) monoclonal antibody for the treatment of epidermal growth factor receptor-expressing tumours. Expert Opin Pharmacother 5(7):1621–1633

    Article  CAS  Google Scholar 

  8. Shi Y, Au JS, Thongprasert S, Srinivasan S, Tsai CM, Khoa MT, Heeroma K, Itoh Y, Cornelio G, Yang PC (2014) A prospective, molecular epidemiology study of EGFR mutations in Asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology (PIONEER). J Thorac Oncol 9(2):154–162

    Article  CAS  Google Scholar 

  9. Mazzarella L, Guida A, Curigliano G (2018) Cetuximab for treating non-small cell lung cancer. Expert Opin Biol Ther 18(4):483–493

    Article  CAS  Google Scholar 

  10. Hsu YF, Ajona D, Corrales L, Lopez-Picazo JM, Gurpide A, Montuenga LM, Pio R (2010) Complement activation mediates cetuximab inhibition of non-small cell lung cancer tumor growth in vivo. Mol Cancer 9:139–146

    Article  Google Scholar 

  11. Liang S, Lin M, Niu L, Xu K, Wang X, Liang Y, Zhang M, Du D, Chen J (2018) Cetuximab combined with natural killer cells therapy: an alternative to chemoradiotherapy for patients with advanced non-small cell lung cancer (NSCLC). Am J Cancer Res 8(5):879–891

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Madsen C, Østergren P, Haarmark C (2020) The value of 68Ga-PSMA PET/CT following equivocal 18F-NaF PET/CT in prostate cancer patients. Diagnostics 10(6):352–362

    Article  CAS  Google Scholar 

  13. Fujiwara K, Koyama K, Suga K, Ikemura M, Saito Y, Hino A, Iwanari H, Kusano-Arai O, Mitsui K, Kasahara H, Fukayama M, Kodama T, Hamakubo T, Momose T (2015) 90Y-labeled anti-ROBO1 monoclonal antibody exhibits antitumor activity against small cell lung cancer xenografts. PLoS ONE 10(5):e0125468–e0125481

    Article  Google Scholar 

  14. Larson SM, Carrasquillo JA, Cheung NK, Press OW (2015) Radioimmunotherapy of human tumours. Nat Rev Cancer 15(6):347–360

    Article  CAS  Google Scholar 

  15. Aghevlian S, Boyle AJ, Reilly RM (2017) Radioimmunotherapy of cancer with high linear energy transfer (LET) radiation delivered by radionuclides emitting alpha-particles or Auger electrons. Adv Drug Deliv Rev 109:102–118

    Article  CAS  Google Scholar 

  16. Siwowska K, Guzik P, Domnanich KA, Monné Rodríguez JM, Bernhardt P, Ponsard B, Hasler R, Borgna F, Schibli R, Köster U, van der Meulen NP, Müller C (2019) Therapeutic potential of 47Sc in comparison to 177Lu and 90Y: preclinical investigations. Pharmaceutics 11(8):424–437

    Article  CAS  Google Scholar 

  17. Fernandez R, Eppard E, Lehnert W, Jimenez-Franco LD, Soza-Ried C, Ceballos M, Ribbeck J, Kluge A, Roesch F, Meckel M, Zhernosekov K, Kramer V, Amaral H (2021) Evaluation of safety and dosimetry of (177)Lu DOTA-ZOL for therapy of bone metastases. J Nucl Med. https://doi.org/10.2967/jnumed.120.255851

    Article  PubMed  PubMed Central  Google Scholar 

  18. Liu Z, Ma T, Liu H, ** Z, Sun X, Zhao H, Shi J, Jia B, Li F, Wang F (2014) 177Lu-labeled antibodies for EGFR-targeted SPECT/CT imaging and radioimmunotherapy in a preclinical head and neck carcinoma model. Mol Pharm 11(3):800–807

    Article  Google Scholar 

  19. Song IH, Lee TS, Park YS, Lee JS, Lee BC, Moon BS, An GI, Lee HW, Kim KI, Lee YJ, Kang JH, Lim SM (2016) Immuno-PET imaging and radioimmunotherapy of 64Cu-/177Lu-labeled anti-EGFR antibody in esophageal squamous cell carcinoma model. J Nucl Med 57(7):1105–1111

    Article  CAS  Google Scholar 

  20. Stergiou N, Nagel J, Pektor S, Heimes A-S, Jäkel J, Brenner W, Schmidt M, Miederer M, Kunz H, Roesch F, Schmitt E (2019) Evaluation of a novel monoclonal antibody against tumor-associated MUC1 for diagnosis and prognosis of breast cancer. Int J Med Sci 16(9):1188–1198

    Article  CAS  Google Scholar 

  21. Cavaliere A, Sun S, Lee S, Bodner J, Li Z, Huang Y, Moores SL, Marquez-Nostra B (2021) Development of [(89)Zr]ZrDFO-amivantamab bispecific to EGFR and c-MET for PET imaging of triple-negative breast cancer. Eur J Nucl Med Mol Imaging 48(2):383–394

    Article  CAS  Google Scholar 

  22. Solomon VR, Barreto K, Bernhard W, Alizadeh E, Causey P, Perron R, Gendron D, Alam MK, Carr A, Geyer CR, Fonge H (2020) Nimotuzumab site-specifically labeled with (89)Zr and (225)Ac using SpyTag/SpyCatcher for PET imaging and alpha particle radioimmunotherapy of epidermal growth factor receptor positive cancers. Cancers (Basel) 12(11):3449–3467

    Article  CAS  Google Scholar 

  23. Vera DR, Eigner S, Henke KE, Lebeda O, Melichar F, Beran M (2012) Preparation and preclinical evaluation of 177Lu-nimotuzumab targeting epidermal growth factor receptor overexpressing tumors. Nucl Med Biol 39(1):3–13

    Article  Google Scholar 

  24. Tang Y, Hu Y, Liu W, Chen L, Zhao Y, Ma H, Yang J, Yang Y, Liao J, Cai J, Chen Y, Liu N (2019) A radiopharmaceutical [(89)Zr]Zr-DFO-nimotuzumab for immunoPET with epidermal growth factor receptor expression in vivo. Nucl Med Biol 70:23–31

    Article  CAS  Google Scholar 

  25. Yeh M-C, Tse BWC, Fletcher NL, Houston ZH, Lund M, Volpert M, Stewart C, Sokolowski KA, Jeet V, Thurecht KJ, Campbell DH, Walsh BJ, Nelson CC, Russell PJ (2020) Targeted beta therapy of prostate cancer with 177Lu-labelled Miltuximab® antibody against glypican-1 (GPC-1). EJNMMI Res 10(1):46–59

    Article  CAS  Google Scholar 

  26. Kuo WI, Cheng KH, Chang YJ, Wu TT, Hsu WC, Chen LC, Chang CH (2019) Radiolabeling, Characteristics and NanoSPECT/CT imaging of 188Re-cetuximab in NCI-H292 human lung cancer xenografts. Anticancer Res 39(1):183–190

    Article  CAS  Google Scholar 

  27. Zaheer J, Kim H, Lee YJ, Kim JS, Lim SM (2019) Combination radioimmunotherapy strategies for solid tumors. Int J Mol Sci 20(22):5579–5596

    Article  CAS  Google Scholar 

  28. Suman S, Priya R, Kameswaran M (2020) Induction of different cellular arrest and molecular responses in low EGFR expressing A549 and high EGFR expressing A431 tumor cells treated with various doses of (177)Lu-Nimotuzumab. Int J Radiat Biol 96(9):1–13

    Article  Google Scholar 

  29. Boucek JA, Turner JH (2004) Validation of prospective whole-body bone marrow dosimetry by SPECT/CT multimodality imaging in 131I-anti-CD20 rituximab radioimmunotherapy of non-Hodgkin?s lymphoma. Eur J Nucl Med Mol Imaging 32(4):458–469

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded from the Key R&D Project of Sichuan Science and Technology Program (Grant No. 2020YFS0030 and 2019ZDZX0012), National Natural Science Foundation of China (Grant No. 21906155), and the Nuclear Energy Development Project of State Administration of Science, Technology and Industry for National Defense (Grant No. 20201192-1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongyuan Wei, **a Yang or Yue Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Li, K., Deng, H. et al. In vitro and in vivo evaluation of a novel anti-EGFR antibody labeled with 89Zr and 177Lu. J Radioanal Nucl Chem 331, 747–754 (2022). https://doi.org/10.1007/s10967-021-08174-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-08174-0

Keywords

Navigation