Log in

Removal of U(VI) from aqueous media by hydrothermal cross-linking chitosan with phosphate group

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

For the selective adsorption of U(VI) from aqueous solutions, the hydrothermal cross-linking chitosan (HCC) and its phosphorylation production (HCC-TPP) were synthesized by hydrothermal reaction. The monolayer maximum capacity of HCC-TPP was improved from 200 mg g−1 of HCC to 409.2 mg g−1 at 298 K. Calculated thermodynamic parameters showed endothermic property of the adsorption process, while kinetic parameters indicated that the interaction followed pseudo-second kinetic model. Selective separation of U(VI) from effluent by HCC-TPP was achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhou LM, Shang C, Liu ZR, Huang GL, Adesina AA (2012) Selective adsorption of uranium (VI) from aqueous solutions using the ion-imprinted magnetic chitosan resins. J Colloid Interf Sci 366:165–172

    Article  CAS  Google Scholar 

  2. Zolfaghari G, Esmaili-Sari A, Anbia M, Younesi H, Amirmahmoodi S, Ghafari-Nazari A (2011) Taguchi optimization approach for Pb(II) and Hg(II) removal from aqueous solutions using modified mesoporous carbon. J Hazard Mater 192:1046–1055

    Article  CAS  Google Scholar 

  3. Djedidi Z, Bouda M, Souissi MA, Ben Cheikh R, Mercier G, Tyagi RD, Blais JF (2009) Metals removal from soil, fly ash and sewage sludge leachates by precipitation and dewatering properties of the generated sludge. J Hazard Mater 172:1372–1382

    Article  CAS  Google Scholar 

  4. Bayyari MA, Nazal MK, Khalili FI (2010) The effect of ionic strength on the extraction of thorium (IV) from perchlorate solution by didodecylphosphoric acid (HDDPA). Arab J Chem 3:115–119

    Article  CAS  Google Scholar 

  5. Yang XM, Chaki TK (1996) Millimetre-sized hollow spheres of lead zirconate titanate by a sol-gel method. J Mater Sci 31(10):2563–2567

    Article  CAS  Google Scholar 

  6. Wang YQ, Zhang ZB, Liu YH, Cao XH, Liu YH, Li Q (2012) Adsorption of U(VI) from aqueous solution by the carboxyl-mesoporous carbon. Chem Eng J 198:246–253

    Article  Google Scholar 

  7. Tian G, Geng JX, ** YD, Wang CL, Li SQ, Chen Z, Wang H, Zhao YS, Li SJ (2011) Sorption of uranium(VI) using oxime-grafted ordered mesoporous carbon CMK-5. J Hazard Mater 190:442–450

    Article  CAS  Google Scholar 

  8. Wang GG, Liu JS, Wang XG, **e ZY, Deng NS (2009) Adsorption of uranium (VI) from aqueous solution onto cross-linked chitosan. J Hazard Mater 168:1053–1058

    Article  CAS  Google Scholar 

  9. Mellah A, Chegrouche S, Barkat M (2006) The removal of uranium (VI) from aqueous solutions onto activated carbon: kinetic and thermodynamic investigations. J Colloid Interf Sci 296:434–441

    Article  CAS  Google Scholar 

  10. Humelnicu D, Popovici E, Dvininov E, Mita C (2009) Study on the retention of uranyl ions on modified clays with titanium oxide. J Radioanal Nucl Chem 279(1):131–136

    Article  CAS  Google Scholar 

  11. Liu YH, Li Q, Cao XH, Wang YQ, Jiang XH, Li M, Hua R, Zhang ZB (2013) Removal of uranium(VI) from aqueous solutions by CMK-3 and its polymer composite. Appl Surf Sci 285:258–266

    Article  CAS  Google Scholar 

  12. Aytas SO, Akyil S, Eral M (2004) Adsorption and thermodynamic behavior of uranium on natural zeolite. J Radioanal Nucl Chem 260(1):119–125

    Article  CAS  Google Scholar 

  13. Akyil S, Aslani MAA, Eral M (2003) Sorption characteristics of uranium onto composite ion exchangers. J Radioanal Nucl Chem 256(1):45–51

    Article  CAS  Google Scholar 

  14. Sun YB, Yang ST, Sheng GD, Guo ZQ, Wang XK (2012) The removal of U(VI) from aqueous solution by oxidized multiwalled carbon nanotubes. J Environ Radioactiv 105:40–47

    Article  CAS  Google Scholar 

  15. Guibal E (2004) Interactions of metal ions with chitosan-based sorbents: a review. Sep Purif Technol 38:43–74

    Article  CAS  Google Scholar 

  16. Wang XY, Du YM, Yang JH, Wang XH, Shi XW, Hu Y (2006) Preparation, characterization and antimicrobial activity of chitosan/layered silicate nanocomposites. Polymer 47:6738–6744

    Article  CAS  Google Scholar 

  17. Akkaya R, Ulusoy U (2008) Adsorptive features of chitosan entrapped in polyacrylamide hydrogel for Pb2+, UO2 2+, and Th4+. J Hazard Mater 151:380–388

    Article  CAS  Google Scholar 

  18. Humelnicu D, Dinu MV, Dragan ES (2011) Adsorption characteristics of UO2 2+ and Th4+ ions from simulated radioactive solutions onto chitosan/clinoptilolite sorbents. J Hazard Mater 185:447–455

    Article  CAS  Google Scholar 

  19. Sun SL, Wang L, Wang AQ (2006) Adsorption properties of crosslinked carboxymethyl-chitosan resin with Pb (II) as template ions. J Hazard Mater 136:930–937

    Article  CAS  Google Scholar 

  20. Hadi Najafabadi H, Irani M, Roshanfekr Rad L, Heydari Haratameh A, Haririan I (2015) Removal of Cu2+, Pb2+and Cr6+from aqueous solutions using a chitosan/graphene oxide composite nanofibrous adsorbent. RSC Adv 5:16532–16539

    Article  CAS  Google Scholar 

  21. Chen AH, Liu SC, Chen CY, Chen CY (2008) Comparative adsorption of Cu(II), Zn(II), and Pb(II) ions in aqueous solution on the crosslinked chitosan with epichlorohydrin. J Hazard Mater 154:184–191

    Article  CAS  Google Scholar 

  22. Chu KH (2002) Removal of copper from aqueous solutions by chitosan in prawn shell: adsorption equilibrium and kinetics. J Hazardous Mater 90:77–95

    Article  CAS  Google Scholar 

  23. Zhang WL, Zhang ZB, Cao XH, Ma RC, Liu YH (2014) Uranium adsorption studies on hydrothermal carbon produced by chitosan using statistical design method. J Radioanal Nucl Chem 301:197–205

    Article  CAS  Google Scholar 

  24. Igberase E, Osifo P, Ofomaja A (2014) The adsorption of copper (II) ions by polyaniline graft chitosan beads from aqueous solution: equilibrium, kinetic and desorption studies. J Environ Chem Eng 2(362–369):25

    Google Scholar 

  25. Cheng ZP, Liu YH, **ong GX, Luo XP, Cao XH, Li M, Zhang ZB (2015) Preparation of amidoximated polymer composite based on CMK-3 for selective separation of uranium from aqueous solutions. J Radioanal Nucl Chem 306(2):365–375

    Article  CAS  Google Scholar 

  26. An B, Kima H, Park C, Lee SH, Choi JW (2015) Preparation and characterization of an organic/inorganic hybrid sorbent (PLE) to enhance selectivity for As(V). J Hazard Mater 289:54–62

    Article  CAS  Google Scholar 

  27. Wu CS, Liu YL, Chiu YS (2002) Epoxy resins possessing flame retardant elements from silicon incorporated epoxy compounds cured with phosphorus or nitrogen containing curing agents. Polymer 43(15):4277–4284

    Article  CAS  Google Scholar 

  28. Jeng RJ, Shau SM, Lin JJ, Su WC, Chiu YS (2002) 1. Eur Polym J 38(4):683–693

    Article  CAS  Google Scholar 

  29. Li WC, Victor DM, Chakrabarti CL (1980) Effect of pH and uranium concentration on interaction of uranium (VI) and uranium (IV) with organic ligands in aqueous solutions. Anal Chem 52(3):520–523

    Article  CAS  Google Scholar 

  30. Li FB, Gao ZM, Li XY, Fang LJ (2014) The effect of Paecilomyces catenlannulatus on removal of U(VI) by illite. J Environ Radioactiv 137:31–36

    Article  Google Scholar 

  31. Saifuddin M, Kumaran P (2005) Removal of heavy metal from industrial wastewater using chitosan coated oil palm shell charcoal. Electron J Biotechnol 8(1):43–53

    Google Scholar 

  32. Wang GH, Wang XG, Chai XJ, Liu JS, Deng NS (2010) Adsorption of uranium (VI) from aqueous solution on calcined and acid-activated kaolin. Appl Clay Sci 47(3):448–451

    Article  CAS  Google Scholar 

  33. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465

    Article  CAS  Google Scholar 

  34. Han RP, Zou WH, Wang Y, Zhu L (2007) Removal of uranium (VI) from aqueous solutions by manganese oxide coated zeolite: discussion of adsorption isotherms and pH effect. J Environ Radioactiv 93:127–143

    Article  CAS  Google Scholar 

  35. Yusan SD, Akyil S (2008) Sorption of uranium (VI) from aqueous solutions by akaganeite. J Hazard Mater 160:388–395

    Article  CAS  Google Scholar 

  36. Kütahyalı C, Eral M (2010) Sorption studies of uranium and thorium on activated carbon prepared from olive stones: kinetic and thermodynamic aspects. J Nucl Mater 396:251–256

    Article  Google Scholar 

  37. Hameed BH, Din AT, Ahmad AL (2007) Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies. J Hazard Mater 141:819–825

    Article  CAS  Google Scholar 

  38. Anirudhan TS, Divya L, Suchithra PS (2009) Kinetic and equilibrium characterization of uranium (VI) adsorption onto carboxylate-functionalized poly(hydroxyethylmethacrylate)-grafted lignocellulosics. J Environ Manag 90:549–560

    Article  CAS  Google Scholar 

  39. Donia AM, Atia AA, Moussa EMM, El-Sherif AM, Abd El-Magied MO (2009) Removal of uranium (VI) from aqueous solutions using glycidyl methacrylate chelating resins. Hydrometallurgy 95:183–189

    Article  CAS  Google Scholar 

  40. Yang WT, Bai ZQ, Shi WQ, Yuan LY, Tian T, Chai ZF, Wang H, Sun ZM (2013) MOF-76:from a luminescent probe to highly efficient UVI sorption material. Chem Commun 49:10415–10417

    Article  CAS  Google Scholar 

  41. Sakaguchi T, Horikoshi T, Nakajima A (1981) Adsorption of uranium by chitin phosphate and chitosan phosphate. Agric Biol Chem 45:2191–2195

    CAS  Google Scholar 

  42. Sureshkumar MK, Das D, Mallia MB, Gupta PC (2010) Adsorption of uranium from aqueous solution using chitosan-tripolyphosphate (CTPP) beads. J Hazard Mater 184:65–72

    Article  CAS  Google Scholar 

  43. Ulusoy U, Şimşek S, Ceyhan Ö (2003) Investigations for modification of polyacrylamide-bentonite by phytic acid and its usability in Fe3+, Zn2+ and UO2 2+ adsorption. Adsorption 9:165–175

    Article  CAS  Google Scholar 

  44. Pang C, Liu YH, Cao XH, Hua R, Wang CX, Li CQ (2010) Adsorptive removal of uranium from aqueous solution using chitosan-coated attapulgite. J Radioanal Nucl Chem 286:185–193

    Article  CAS  Google Scholar 

  45. Liu YT, Liu YH, Cao XH, Hua R, Wang YQ, Pang C, Li XY (2011) Biosorption studies of uranium (VI) on cross-linked chitosan: isotherm, kinetic and thermodynamic aspects. J Radioanal Nucl Chem 290:231–239

    Article  CAS  Google Scholar 

  46. Xu JS, Chen MS, Zhang CH, Yi ZJ (2013) Adsorption of uranium (VI) from aqueous solution by diethylenetriamine-functionalized magnetic chitosan. J Radioanal Nucl Chem 298:1375–1383

    Article  CAS  Google Scholar 

  47. Li L, Ding DX, Hu N, Fu PK, **n X, Wang YD (2014) Adsorption of U(VI) ions from low concentration uranium solution by thermally activated sodium feldspar. J Radioanal Nucl Chem 299:681–690

    Article  CAS  Google Scholar 

  48. Şimşek S, Baybaş D, Koçyiğit MÇ, Yıldırım H (2014) Organoclay modified with lignin as a new adsorbent for removal of Pb2+ and UO2 2+. J Radioanal Nucl Chem 299:283–292

    Article  Google Scholar 

  49. Humelnicu D, Drochioiu G, Sturza MI, Cecal A, Popa K (2006) Kinetic and thermodynamic aspects of U(VI) and Th(IV) sorption on a zeolitic volcanic tuff. J Radioanal Nucl Chem 270:637–640

    Article  CAS  Google Scholar 

  50. Gao MW, Zhu GR, Gao CJ (2014) a review: adsorption materials for the removal and recovery of uranium from aqueous solutions. Energy Environ Focus 3:219–226

    Article  Google Scholar 

  51. Zareh MM, Aldaher A, Hussein AEM, Mahfouz MG, Soliman M (2013) Uranium adsorption from a liquid waste using thermally and chemically modified bentonite. J Radioanal Nucl Chem 295:1153–1159

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Basic Research Program of China (No. 2014CB460604), the National Natural Science Foundation of China (Grant No. 21301028, 11475044, 41461070, 21561002), the Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT13054), the Science & Technology Support Program of Jiangxi Province (Grant No. 20141BBG70001), the Advanced Science & Technology Innovation Team Program of Jiangxi Province (Grant No. 20142BCB24006), and the Innovation Team Program of Jiangxi Provincial Department of Science and Technology (Grant No. 2014BCB24006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-bin Zhang or Yun-hai Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Zm., Qiu, Yf., Dai, Y. et al. Removal of U(VI) from aqueous media by hydrothermal cross-linking chitosan with phosphate group. J Radioanal Nucl Chem 309, 1217–1226 (2016). https://doi.org/10.1007/s10967-016-4722-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-4722-8

Keywords

Navigation