Log in

Production of 61Cu by the natZn(p,α) reaction: improved separation and specific activity determination by titration with three chelators

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The cyclotron-based production of positron-emitting 61Cu using the (p,α) reaction at 11.7 MeV was investigated starting from natural-zinc (natZn) and enriched 64Zn-foil targets, as well as its subsequent purification. For natZn, a combination of three resins were assessed to separate 61Cu from contaminating 66,67,68Ga and natZn. The specific activity of the purified 61Cu determined using ICP-MS analysis ranged from 143.3 ± 14.3(SD) to 506.2 ± 50.6 MBq/µg while the titration method using p-SCN-Bn-DOTA, p-SCN-Bn-NOTA and diamsar gave variable results (4.7 ± 0.2–412.5 ± 15.3 MBq/µg), with diamsar lying closest to the ICP-MS values. Results suggest that the p-SCN-Bn-DOTA and p-SCN-Bn-NOTA titration methods are significantly affected by the presence of trace-metal contaminants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Smith SV (2004) Molecular imaging with Copper-64. J Inorg Biochem 98:1874–1901

    Article  CAS  Google Scholar 

  2. Laforest R, Dehdashti F, Lewis JS, Schwarz SW (2005) Dosimetry of 60/61/62/64Cu-ATSM: a hypoxia imaging agent for PET. Eur J Nucl Med Mol Imaging 32:764–770

    Article  CAS  Google Scholar 

  3. Wong TZ, Lacy JL, Petry NA, Hawk TC, Sporn TA, Dewhirst MW, Vlahovic G (2008) PET of hypoxia and perfusion with 62Cu-ATSM and 62Cu-PTSM using a 62Zn/62Cu generator. Am J Roentgenol 190:427–432

    Article  Google Scholar 

  4. Thieme S, Walther M, Preusche S, Rajander J, Pietzsch H, Lill J, Kaden M, Solin O, Steinbach J (2013) High specific activity 61Cu via 64Zn(p, α)61Cu reaction at low proton energies. Appl Radiat Isot 72:169–176

    Article  CAS  Google Scholar 

  5. McCarthy DW, Bass LA, Cutler PD, Shefer RE, Klinkowstein RE, Herrero P, Lewis JS, Cutler CS, Anderson CJ, Welch MJ (1999) High purity production and potential applications of Copper-60 and Copper-61. Nucl Med Biol 26:351–358

    Article  CAS  Google Scholar 

  6. Szelecsényi F, Blessing G, Qaim SM (1993) Excitation function of proton induced nuclear reations on enriched 61Ni and 64Ni: possibility of production of no-carrier-added 61Cu and 64Cu at a small cyclotron. Appl Radiat Isot 44:575–580

    Article  Google Scholar 

  7. Piel H, Qaim SM, Stoecklin G (1992) Excitation functions of (p,xn)-reactions on natNi and highly enriched 62Ni: possibility of production of medically important radioisotope 62Cu at a small cyclotron. Radiochim Acta 57:1–5

    Article  CAS  Google Scholar 

  8. Tanaka S, Furukawa M, Chiba M (1972) Nuclear reactions of nickel with protons up to 56 MeV. J Inorg Nucl Chem 34:2419–2426

    Article  CAS  Google Scholar 

  9. Szelecsényi F, Kovács Z, Suzuki K, Okada K, van der Walt TN, Steyn GF, Mukherjee S (2005) Production possibility of 61Cu using proton induced nuclear reactions on zinc for PET studies. J Radioanal Nucl Chem 263:539–546

    Article  Google Scholar 

  10. Asad AH, Chan S, Morandeau L, Cryer D, Smith SV, Price RI (2014) Excitation functions of natZn(p,x) nuclear reactions with proton beam energy below 18 MeV. Appl Radiat Isot 94:67–71

    Article  CAS  Google Scholar 

  11. Al-Saleh FS, Mungren KSA, Azzam A (2007) Excitation function measurements and integral yields estimation for natZn(p,x) reactions at low energies. Appl Radiat Isot 65:1101–1107

    Article  CAS  Google Scholar 

  12. Uddin MS, Khandaker MU, Kim KS, Lee YS, Kim GN (2007) Excitation functions of the proton induced nuclear reactions on nat Zn up to 40 MeV. Nucl Instr Meth B 258:313–320

    Article  CAS  Google Scholar 

  13. Cohen BL, Newman E, Charpie RA, Handly TH (1954) (p, pn) and (pαn) excitation functions. Phys Rev 94:620

    Article  CAS  Google Scholar 

  14. Rowshanfarzad P, Sabetb M, Jalilian AR, Kamalidehghan M (2006) An overview of copper radionuclides and production of 61Cu by proton irradiation of natZn at a medical cyclotron. Appl Radiat Isot 64:1563–1573

    Article  CAS  Google Scholar 

  15. Dasgupta AK, Mausner LF, Srivastava SC (1991) A new separation procedure for 67Cu from proton irradiation of Zn. Appl Radial Isot 42:371–376

    Article  CAS  Google Scholar 

  16. Schwarzbach R, Zimmermann K, Blauenstein P, Smith A, Schubiger PA (1995) Development of a simple and selective separation of 67Cu from irradiated zinc for use in antibody labelling: a comparison of methods. Appl Radiat Isot 46:329–336

    Article  CAS  Google Scholar 

  17. McCarthy DW, Shefer RE, Klinkowstein RE, Bass LA, Margenaeu WH, Cutler CS, Anderson CJ, Welch MJ (1997) Efficient production of high specitic activity 64Cu using a biomedical cyclotron. Nucl Med Biol 24:35–43

    Article  CAS  Google Scholar 

  18. Matarrese M, Bedeschi P, Scardaoni R, Sudati F, Savi A, Pepe A, Masiello V, Todde S, Gianolli L, Messa C, Fazio F (2010) Automated production of copper radioisotopes and preparation of high specific activity [(64)Cu]Cu-ATSM for PET studies. Appl Radiat Isot 68:5–13

    Article  CAS  Google Scholar 

  19. Avila-Rodrigueza MA, Nyeb JA, Nickles RJ (2007) Simultaneous production of specific activity 64Cu and 61Co with 11.4 MeV protons on enriched 64Ni nuclei. Appl Radiat Isot 65:1115–1120

    Article  Google Scholar 

  20. Thieme S, Walther M, Pietzsch H-J, Henniger J, Preusche S, Mäding P, Steinbach J (2012) Module-assisted preparation of 64Cu with high specific activity. Appl Radiat Isot 70:602–608

    Article  CAS  Google Scholar 

  21. Mastrena T, Guthrieb J, Eisenbeisd P, Vollerd T, Mebrahtud E, Robertson JD, Lapi SE (2014) Specific activity measurement of 64Cu: a comparison of methods. Appl Radiat Isot 90:117–121

    Article  Google Scholar 

  22. Jarrett BR, Gustafsson B, Kukis DL, Louie AY (2008) Synthesis of 64Cu-labeled magnetic nanoparticles for multimodal imaging. Bioconjug Chem 19(7):1496–1504

    Article  CAS  Google Scholar 

  23. Craft JM, De Silva RA, Lears KA, Andrews R, Liang K, Achilefu S, Rogers BE (2012) In vitro and in vivo evaluation of a 64Cu-labeled NOTA-Bn-SCN-Aoc-bombesin analogue in gastrin-releasing peptide receptor expressing prostate cancer. Nucl Med Biol 39:609–616

    Article  CAS  Google Scholar 

  24. Kong L, Mume E, Triani G, Smith SV (2013) Optimizing radiolabeling amine-functionalized silica nanoparticles using SarAr-NCS for applications in imaging and radiotherapy. Langmuir 29:5609–5616

    Article  CAS  Google Scholar 

  25. Asad AH, Smith SV, Chan S, Jeffery CM, Morandeau L, Price RI (2012) Cyclotron production of 61Cu using natural Zn & enriched 64Zn targets. AIP Conf Proc 1509:91–95. doi:10.1063/1.4773947

    Article  CAS  Google Scholar 

  26. Chakravarty R, Chakraborty S, Dash A, Pillai MRA (2013) Detailed evaluation on the effect of metal ion impurities on complexation of generator eluted 68Ga with different bifunctional chelators. Nucl Med Biol 40:197–205

    Article  CAS  Google Scholar 

  27. Paterson BM, Buncic G, McInnes LE, Roselt P, Cullinane C, Binns DS, Jeffery CM, Price RI, Hicks RJ, Donnelly PS (2014) Bifunctional 64Cu-labelled macrobicyclic cage amine isothiocyanates for immuno-positron emission tomography. Dalton Trans 44(11):4901–4909

    Article  Google Scholar 

  28. Weia L, Yea Y, Wadasa TJ, Lewis JS, Welch MJ, Achilefu S, Anderson CJ (2009) 64Cu-Labeled CB-TE2A and diamsar-conjugated RGD peptide analogs for targeting angiogenesis: comparison of their biological activity. Nucl Med Biol 36:277–285

    Article  Google Scholar 

  29. Liu S, Li Z, Conti PS (2014) Development of multi-functional chelators based on sarcophagine cages. Mol 19:4246–4255

    Article  Google Scholar 

Download references

Acknowledgments

The authors express their thanks to the Medical Technology and Physics radiochemists and engineering staff for providing scientific materials and other support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali H. Asad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asad, A.H., Smith, S.V., Morandeau, L.M. et al. Production of 61Cu by the natZn(p,α) reaction: improved separation and specific activity determination by titration with three chelators. J Radioanal Nucl Chem 307, 899–906 (2016). https://doi.org/10.1007/s10967-015-4412-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4412-y

Keywords

Navigation