Log in

Preparation of amidoximated polymer composite based on CMK-3 for selective separation of uranium from aqueous solutions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The ability of amidoximated mesoporous carbon (AO/CMK-3) by in situ polymerizing acrylonitrile onto the surface of mesoporous carbon (CMK-3) and reducing with hydroxylamine hydrochloride had been explored for the removal and recovery of uranium from aqueous solutions. The monolayer maximum capacity of AO/CMK-3 was improved from 69.20 of CMK-3 to 238.7 mg/g at 298 K. Calculated thermodynamic parameters showed endothermic property of the adsorption process, while kinetic parameters indicated that the interaction followed pseudo-second kinetic model. Selective separation of U(VI) from effluent by AO/CMK-3 was achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Barkat M, Nibou D, Amokrane S, Chegrouche S, Mellah A (2015) U(VI) adsorption on synthesized 4A and P1 zeolites: equlibrium, kinetic, and thermodynamic studies. C R Chim 18:261–269

    Article  CAS  Google Scholar 

  2. Nassab HR, Souri A, Javadian A, Amini MK (2015) A novel mercury-free strip** voltammetric sensor for uranium based on electropolymerized N-phenylanthranilic acid film electrode. Sensor Actuators B-Chem 215:360–367

    Article  Google Scholar 

  3. Donia AM, Atia AM, Ewais EMM, El-Sherif AM, Abd El-Magied MO (2009) Removal of uranium(VI) from aqueous solutions using glycidyl methacrylate chelating resins. Hydrometallurgy 95:183–189

    Article  CAS  Google Scholar 

  4. Preetha CR, Gladis JM, Rao TP (2006) Removal of toxic uranium from synthetic nuclear power reactor effluents using uranyl ion imprinted polymer particles. Environ Sci Technol 40(9):3070–3074

    Article  CAS  Google Scholar 

  5. Hu G, Li J, Hou H (2015) A combination of solvent extraction and freeze thaw for oil recovery from petroleum refinery wastewater treatment pond sludge. J Hazard Mater 283:832–840

    Article  CAS  Google Scholar 

  6. Wei F, Cao C, Huang P, Song W (2015) A new ion exchange adsorption mechanism between carbonate groups and fluoride ions of basic aluminum carbonate nanospheres. Rsc Adv 5:13256–13260

    Article  CAS  Google Scholar 

  7. Rao TP, Metilda P, Gladis JM (2006) Preconcentration techniques for uranium(VI) and thorium(IV) prior to analytical determination—an overview. Talanta 68:1047–1064

    Article  CAS  Google Scholar 

  8. Coleman SJ, Coronado PR, Maxwell RS, Reynolds JG (2003) Granulated activated carbon modified with hydrophobic silica aerogel-potential composite materials for the removal of uranium from aqueous solutions. Environ Sci Technol 37:2286–2290

    Article  CAS  Google Scholar 

  9. Vasylenko AI, Tokarchuk MV, Jurga S (2015) Effect of a vacancy in single-walled carbon nanotubes on He and NO adsorption. J Phys Chem C 119:5113–5116

    Article  CAS  Google Scholar 

  10. Shao D, Jiang Z, Wang X, Li J, Meng Y (2009) Plasma induced grafting carboxymethyl cellulose on multiwalled carbon nanotubes for the removal of UO2 2+ from aqueous solution. J Phys Chem B 113:860–864

    Article  CAS  Google Scholar 

  11. Ma X, Zhang F, Wei L (2015) Effect of wood charcoal contents on the adsorption property, structure and morphology of mesoporous activated carbon fibers derived from wood liquefaction process. J Mater Sci 50:1908–1914

    Article  CAS  Google Scholar 

  12. Ryoo R, Joo SH, Jun S (1999) Synthesis of highly order carbon molecular sieves via template-mediated structural transformation. J Phys Chem B 103(37):7743–7746

    Article  CAS  Google Scholar 

  13. Lee JS, Joo SH, Ryoo R (2002) Synthesis of mesoporous silicas of controlled pore wall thickness and their replication to ordered nanoporous carbons with various pore diameters. J Am Chem Soc 124(7):1156–1157

    Article  CAS  Google Scholar 

  14. Tian G, Geng J, ** Y, Wang C, Chen Z, Wang H, Zhao Y, Li S (2011) Sorption of uranium(VI) using oxime-grafted ordered mesoporous carbon CMK-5. J Hazard Mater 190:442–450

    Article  CAS  Google Scholar 

  15. Zhao Y, Liu C, Feng M, Chen Z, Tian G, Wang L, Huang J, Li S (2010) Solid phase extraction of uranium (VI) onto benzoylthiourea-anchored activated carbon. J Hazard Mater 176:119–124

    Article  CAS  Google Scholar 

  16. Lu AH, Schüth F (2006) Nanocasting: a versatile strategy for creating nanostructured porous materials. Adv Mater 18:1793–1805

    Article  CAS  Google Scholar 

  17. Darmstadt H, Roy C, Kaliaguine S, Kim TW, Ryoo R (2003) Surface and pore structures of CMK-5 ordered mesoporous carbons by adsorption and surface spectroscopy. Chem Mater 15:3300–3307

    Article  CAS  Google Scholar 

  18. Kruk M, Jaroniec M, Kim TW, Ryoo R (2003) Synthesis and characterization of hexagonally ordered carbon nanopipes. Chem Mater 15:2815–2823

    Article  CAS  Google Scholar 

  19. Wang Y, Zhang Z, Liu Y, Cao X, Li Q (2012) Adsorption of U(VI) from aqueous solution by the carboxyl-mesoporous carbon. Chem Eng J 198:246–253

    Article  Google Scholar 

  20. Sprynskyy M, Kowalkowski T, Tutu H (2015) Ionic liquid modified diatomite as a new effective adsorbent for uranium ions removal from aqueous solution. Colloid Surf B 465:159–167

    Article  CAS  Google Scholar 

  21. Shao D, Hou G, Li J, Wen T, Ren X, Wang X (2014) PANI/GO as a super adsorbent for the selective adsorption of uranium(VI) Chem. Eng J 255:604–612

    CAS  Google Scholar 

  22. Wang X, Yuan L, Chai Z, Shi W (2012) Mesoporous silica SBA-15 functionalized with phosphonate and amino groups for uranium uptake. Sci China Chem 55:1705–1711

    Article  CAS  Google Scholar 

  23. Liu Y, Cao X, Hua R, Wang Y, Pang C, Hua M, Li X (2011) Biosorption studies of uranium(VI) on cross-linked chitosan: isotherm, kinetic and thermodynamic aspects. J Radioanal Nucl Chem 290:231–239

    Article  CAS  Google Scholar 

  24. Sabarudin A, Noguchi O, Oshima M, Higuchi K, Motomizu S (2007) Application of chitosan functionalized with 3,4-dihydroxy benzoic acid moiety for on-line preconcentration and determination of trace elements in water samples. Microchim Acta 159:341–348

    Article  CAS  Google Scholar 

  25. Merdivan M, Düz MZ, Hamamci C (2001) Sorption behaviour of uranium(VI) with N, N-dibutyl- N’-benzoylthiourea Impregnated in Amberlite XAD-16. Talanta 55:639–645

    Article  CAS  Google Scholar 

  26. Merdivan M, Seyhan S, Gok C (2006) Use of benzoylthiourea immobilized on silica gel for separation and preconcentration of uranium (VI). Microchim Acta 154:109–114

    Article  CAS  Google Scholar 

  27. Zhang Z, Zhou Z, Cao X, Liu Y, **ong G, Liang P (2014) Removal of uranium(VI) from aqueous solutions by new phosphorus-containing carbon spheres synthesized via one-step hydrothermal carbonization of glucose in the presence of phosphoric acid. J Radioanal Nucl Chem 299:1479–1487

    Article  CAS  Google Scholar 

  28. Horzum N, Shahwan T, Parlak O, Demir MM (2012) Synthesis of amidoximated polyacrylonitrile fibers and its application for sorption of aqueous uranyl ions under continuous flow. Chem Eng J 213:41–49

    Article  CAS  Google Scholar 

  29. Das S, Pandey AK, Vasudevan T, Athawale AA, Manchanda VK (2009) Adsorptive preconcentration of uranium in hydrogels from seawater and aqueous solutions. Ind Eng Chem Res 48:6789–6796

    Article  CAS  Google Scholar 

  30. Geng J, Ma L, Wang H, Liu J, Bai C, Li S (2012) Amidoxime-grafted hydrothermal carbon microspheres for highly selective separation of uranium. J Nanosci Nanotechnol 12:7354–7363

    Article  CAS  Google Scholar 

  31. Pickett G (1945) Modification of the Brunauer-Emmett-Teller theory of multimolecular adsorption. J Am Chem Soc 67:1958–1962

    Article  CAS  Google Scholar 

  32. Barrett E, Joyner L, Halenda P (1951) Study of pore size distribution by capillary absorption method. J Am Chem Soc 73:373–380

    Article  CAS  Google Scholar 

  33. Bhatti TM, Mateen A, Amin M, Malik KA, Khalid AM (1991) Spectrophotometric determination of uranium(VI) in bacterial leach liquors using arsenazo-III. J Chem Technol Biot 52:331–341

    Article  CAS  Google Scholar 

  34. Liu X, Liu H, Ma H, Cao C, Yu M, Wang Z, Deng B, Wang M, Li J (2012) Adsorption of the uranyl ions on an amidoxime-based polyethylene nonwoven fabric prepared by preirradiation-induced emulsion graft polymerization. Ind Eng Chem Res 51:15089–15095

    Article  CAS  Google Scholar 

  35. Kruk M, Jaroniec M (2001) Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. Chem Mater 13:3169–3183

    Article  CAS  Google Scholar 

  36. Beck J, Vartuli J, Roth W, Leonowicz M, Kresge C, Schmitt K, Chu C, Olson D, Sheppard E (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 114:10834–10843

    Article  CAS  Google Scholar 

  37. Kresge C, Leonowicz M, Roth W, Vartuli J, Beck J (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712

    Article  CAS  Google Scholar 

  38. Gupta VK, Rastogi A (2008) Biosorption of lead(II) from aqueous solutions by non-living algal biomass Oedogonium sp. and Nostoc sp.—A comparative study. Colloids Surf B 64:170–178

    Article  CAS  Google Scholar 

  39. Barnett MO, Jardine PM, Brooks SC, Selim HM (2000) Adsorption and transport of uranium(VI) in subsurface media. Soil Sci Soc Am J 64:908–911

    Article  CAS  Google Scholar 

  40. Zhao A, Uchiyama G, Asakura T (2005) The pH Effect on the uranium adsorption from seawater by a macroporous fibrous polymeric material containing amidoxime chelating functional group. React Funct Polym 63:143–153

    Article  Google Scholar 

  41. Bektaş N, Ağım BA, Kara S (2004) Kinetic and equilibrium studies in removing lead ions from aqueous solutions by natural sepiolite. J Hazard Mater 112:115–122

    Article  Google Scholar 

  42. Ho YS, McKay G (1998) Comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Saf Environ Prot 76:332–340

    Article  CAS  Google Scholar 

  43. Arıca MY, Bayramoǧlu G, Yılmaz M, Bektaş S, Genç Ö (2004) Biosorption of Hg2+, Cd2+, and Zn2+ by Ca-alginate and immobilized wood-rotting fungus Funalia trogii. J Hazard Mater 109:191–199

    Article  Google Scholar 

  44. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and plat-inum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  45. Gerente C, Lee V, Cloirec PL, McKay G (2007) Application of chitosan for the removal of metals from wastewaters by adsorption—mechanisms and models review. Crit Rev Environ Sci Technol 37:41–127

    Article  CAS  Google Scholar 

  46. Freundlich H (1906) Ueber dye adsorption in lösungen. Z Phys Chem 57:385–470

    CAS  Google Scholar 

  47. Anirudhan T, Divya L, Suchithra P (2009) Kinetic and equilibrium characterization of uranium(VI) adsorption onto carboxylate-functionalized poly(hydroxyethylmethacrylate)-grafted lignocellulosics. J Environ Manage 90:549–560

    Article  CAS  Google Scholar 

  48. Kilislioglu A, Bilgin B (2003) Thermodynamic and kinetic investigations of uranium adsorption on amberlite IR-118H resin. Appl Radiat Isot 58:155–160

    Article  CAS  Google Scholar 

  49. Gürboğa G, Tel H (2005) Preparation of TiO2–SiO2 mixed gel spheres for strontium adsorption. J Hazard Mater 120:135–142

    Article  Google Scholar 

  50. Singh DK, Mishra S (2009) Synthesis and characterization of UO2 2+-ion imprinted polymer for selective extraction of UO2 2+. Anal Chim Acta 644:42–47

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support provided by the National Natural Science Foundation of China (Grant Nos. 21301028, 21201033, 11475044, 41461070), National Basic Research Program of China (NO. 2014CB460604), Natural Science Foundation of Jiangxi Province (Grant No. 20132BAB203027), the Project of the Jiangxi Provincial Department of Education (Grant No. GJJ13452, GJJ14472), the Jiangxi province science and technology support program (20141BBG70001), and the Jiangxi province science and technology innovation team program (20142BCB24006).

Author information

Authors and Affiliations

Corresponding author

Correspondence to Zhi-bin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Zp., Liu, Yh., **ong, Gx. et al. Preparation of amidoximated polymer composite based on CMK-3 for selective separation of uranium from aqueous solutions. J Radioanal Nucl Chem 306, 365–375 (2015). https://doi.org/10.1007/s10967-015-4215-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4215-1

Keywords

Navigation