Log in

Comparison of estimated human effective dose of 67Ga- and 99mTc-labeled bombesin based on distribution data in mice

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This study describes the preparation, biodistribution and absorbed dose prediction of 67Ga and 99mTc labeled bombesin (BBN) in human organs, after injection in mice determined via medical internal radiation dose. We estimated that a 185-MBq injection of 67Ga-BBN into the humans would result in an estimated effective absorbed dose of 2.50 mSv whereas this value for 99mTc-BBN is 1.33 mSv in the whole body. These results suggest that injection of 67Ga-BBN would result 2 times higher absorbed dose compare to 99mTc-BBN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jalilian AR, Shanesazzadeh S, Rowshanfarzad P, Bolourinovin F, Majdabadi A (2008) Biodistribution study of 61Cu] pyruvaldehyde-bis (N-4-methylthiosemicarbazone) in normal rats as a PET tracer. Nucl Sci Tech 19:159–164

    Article  CAS  Google Scholar 

  2. Van de Wiele C, Dumont F, Van Belle S, Slegers G, Peers S, Dierckx R (2001) Is there a role for agonist gastrin-releasing peptide receptor radioligands in tumour imaging? Nucl Med Commun 22:5–15

    Article  Google Scholar 

  3. Plonowski A, Nagy A, Schally AV, Sun B, Groot K, Halmos G (2000) in vivo inhibition of PC-3 human androgen-independent prostate cancer by a targeted cytotoxic bombesin analogue, AN-215. Int J Cancer 88:652–657

    Article  CAS  Google Scholar 

  4. Karra SR, Schibli R, Gali H, Katti KV, Hoffman TJ, Higginbotham C, Sieckman GL, Volkert WA (1999) 99mTc-labeling and in vivo studies of a bombesin analogue with a novel water-soluble dithiadiphosphine-based bifunctional chelating agent. Bioconjugate Chem 10:254–260

    Article  CAS  Google Scholar 

  5. Cuttitta F, Carney DN, Mulshine J, Moody TW, Fedorko J, Fischler A, Minna JD (1985) Bombesin-like peptides can function as autocrine growth factors in human small-cell lung cancer. Nature 316:823–826

    Article  CAS  Google Scholar 

  6. Zhang H, Chen J, Waldherr C, Hinni K, Waser B, Reubi JC, Maecke HR (2004) Synthesis and evaluation of bombesin derivatives on the basis of pan-bombesin peptides labeled with indium-111, lutetium-177, and yttrium-90 for targeting bombesin receptor-expressing tumors. Cancer Res 64:6707–6715

    Article  CAS  Google Scholar 

  7. Smith CJ, Gali H, Sieckman GL, Hayes DL, Owen NK, Mazuru DG, Volkert WA, Hoffman TJ (2003) Radiochemical investigations of 177Lu-DOTA-8-Aoc-BBN [7–14] NH2: an in vitro/in vivo assessment of the targeting ability of this new radiopharmaceutical for PC-3 human prostate cancer cells. Nucl Med Biol 30:101–109

    Article  CAS  Google Scholar 

  8. Roivainen A, Kähkönen E, Luoto P, Borkowski S, Hofmann B, Jambor I, Lehtiö K, Rantala T, Rottmann A, Sipilä H, Sparks R, Suilamo S, Tolvanen T, Valencia R, Minn H (2013) Plasma pharmacokinetics, whole-body distribution, metabolism, and radiation dosimetry of 68Ga bombesin antagonist BAY86-7548 in healthy men. J Nucl Med 54:867–872

    Article  CAS  Google Scholar 

  9. Shirmardi S, Gandomkar M, Mazidi M, Shafiei M, Maragheh MG (2011) Synthesis and evaluation of a new bombesin analog labeled with 99mTc as a GRP receptor imaging agent. J Radioanal Nucl Ch 288:327–335

    Article  CAS  Google Scholar 

  10. Shirmardi SP, Gandomkar M, Maragheh MG, Shamsaei M (2011) Preclinical evaluation of a new bombesin analog for imaging of gastrin-releasing peptide receptors. Cancer Biother Radio 26:309–316

    Article  CAS  Google Scholar 

  11. Hoffman TJ, Gali H, Smith CJ, Sieckman GL, Hayes DL, Owen NK, Volkert WA (2003) Novel series of 111In-labeled bombesin analogs as potential radiopharmaceuticals for specific targeting of gastrin-releasing peptide receptors expressed on human prostate cancer cells. J Nucl Med 44:823–831

    CAS  Google Scholar 

  12. Chen X, Park R, Hou Y, Tohme M, Shahinian AH, Bading JR, Conti PS (2004) microPET and autoradiographic imaging of GRP receptor expression with 64Cu-DOTA-[Lys3] bombesin in human prostate adenocarcinoma xenografts. J Nucl Med 45:1390–1397

    CAS  Google Scholar 

  13. Scopinaro F, De Vincentis G, Varvarigou AD, Laurenti C, Iori F, Remediani S, Chiarini S, Stella S (2003) 99mTc-bombesin detects prostate cancer and invasion of pelvic lymph nodes. Eur J Nucl Med Mol I 30:1378–1382

    Article  Google Scholar 

  14. La Bella R, Garcia-Garayoa E, Langer M, Bläuenstein P, Beck-Sickinger AG, August Schubiger P (2002) In vitro and in vivo evaluation of a 99mTc (I)-labeled bombesin analogue for imaging of gastrin releasing peptide receptor-positive tumors. Nucl Med Biol 29:553–560

    Article  Google Scholar 

  15. Sadeghzadeh N, Ahmadzadeh M, Erfani M (2013) Evaluation of a new radiolabeled bombesin derivative with 99mTc as potential targeted tumor imaging agent. J Radioanal Nucl Ch 298:287–293

    Article  CAS  Google Scholar 

  16. Shanehsazzadeh S, Jalilian AR, Sadeghi HR, Allahverdi M (2009) Determination of human absorbed dose of 67GA-DTPA-ACTH based on distribution data in rats. Radiat Prot Dosim 134:79–86

    Article  CAS  Google Scholar 

  17. Shanehsazzadeh S, Lahooti A, Sadeghi HR, Jalilian AR (2011) Estimation of human effective absorbed dose of 67Ga-cDTPA-gonadorelin based on biodistribution rat data. Nucl Med Commun 32:37–43

    Article  CAS  Google Scholar 

  18. Lahooti A, Shanehsazzadeh S, Jalilian AR, Tavakoli MB (2013) Assessment of effective absorbed dose of 111In-DTPA-Buserelin in human on the basis of biodistribution rat data. Radiat Prot Dosim 154:1–8

    Article  CAS  Google Scholar 

  19. Lahooti A, Shanehsazzadeh S, Oghabian MA, Allen BJ (2013) Assessment of human effective absorbed dose of Tc-99m-USPIO based on biodistribution rat data. J Label Compd Rad 76:S258–S258

  20. Moghaddam AK, Jalilian AR, Hayati V, Shanehsazzadeh S (2010) Determination of human absorbed dose of 201Tl (III)-DTPA-HIgG based on biodistribution data in rats. Radiat Prot Dosim 141:269–274

    Article  Google Scholar 

  21. Shanehsazzadeh S, Oghabian MA, Lahooti A, Abdollahi M, Haeri SA, Amanlou M, Daha FJ, Allen BJ (2013) Estimated background doses of [67Ga]-DTPA-USPIO in normal Balb/c mice as a potential therapeutic agent for liver and spleen cancers. Nucl Med Commun 34:915–925

    Google Scholar 

  22. Shanehsazzadeh S, Oghabian MA, Lahooti A, Allen BJ (2013) Development of ultra small super paramagnetic iron oxide nanoparticles labeled with Gallium 67 as a dual modality probe. J Label Compd Radiopharm Rad 56:S236–S236

  23. Sadeghzadeh M, Shanehsazzadeh S, Lahooti A (2015) Assessment of the effective absorbed dose of 4-benzyl-1-(3-[125I]-iodobenzylsulfonyl) piperidine in humans on the basis of biodistribution data of rats. Nucl Med Commun 36:90–94

    Article  CAS  Google Scholar 

  24. Jalilian AR, Shanehsazzadeh S, Akhlaghi M, Garousi J, Rajabifar S, Tavakoli MB (2008) Preparation and biodistribution of [67Ga]-DTPA-gonadorelin in normal rats. J Radioanal Nucl Ch 278:123–129

    Article  CAS  Google Scholar 

  25. Council B (1987) Guidelines on the use of living animals in scientific investigations. Biol Council

  26. Jalilian AR, Sardari D, Kia L, Rowshanfarzad P, Garousi J, Akhlaghi M, Shanehsazzadeh S, Mirzaii M (2008) Preparation, quality control and biodistribution studies of two [111In]-rituximab immunoconjugates. Sci Pharm 76:151–170

    Article  CAS  Google Scholar 

  27. Shanehsazzadeh S, Gruettner C, Lahooti A, Mahmoudi M, Allen BJ, Ghavami M, Daha FJ, Oghabian MA (2014) Monoclonal antibody conjugated magnetic nanoparticles could target MUC‐1‐positive cells in vitro but not in vivo. Contrast Media Mol I. Doi: 10.1002/cmmi.1627

  28. Shanehsazzadeh S, Yousefnia H, Lahooti A, Zolghadri S, Jalilian AR, Afarideh H (2014) Assessment of human effective absorbed dose of 67Ga–ECC based on biodistribution rat data. Ann Nucl Med 28:1–7

    Article  Google Scholar 

  29. Jalilian A, Shanehsazzadeh S, Akhlaghi M, Garoosi J, Rajabifar S, Tavakoli M (2008) Preparation and evaluation of [67Ga]-DTPA-β-1–24-corticotrophin in normal rats. Radiochim Acta 96:435–439

    CAS  Google Scholar 

  30. Jalilian AR, Shanehsazzadeh S, Akhlaghi M, Kamali-dehghan M, Moradkhani S (2010) Development of [111In]-DTPA-buserelin for GnRH receptor studies. Radiochim Acta 98:113–119

    CAS  Google Scholar 

  31. Shanehsazzadeh S, Lahooti A (2014) Biodistribution of 80 nm iron oxide nanoparticles labeled with 99mTc in Balb/c mice. Nucl Med Biol 41:625

    Article  Google Scholar 

  32. Sparks RB, Aydogan B (1996) Comparison of the effectiveness of some common animal data scaling techniques in estimating human radiation dose. Paper presented at the sixth international radiopharmaceutical dosimetry symposium Oak Ridge, Oak Ridge Associated Universities

  33. Bevelacqua J (2005) Internal dosimetry primer. Radiat Prot Manag 22:7–17

    Google Scholar 

  34. Snyder W, Ford M, Warner G, Watson S (1975) S” absorbed dose per unit cumulated activity for selected radionuclides and organs. MIRD Pamphlet No. 11. Society of Nuclear Medicine, New York

  35. Icrp (2008) Radiation dose to patients from radiopharmaceuticals. Addendum 3 to ICRP Publication 53. ICRP Publication 106. Approved by the Commission in October 2007. Ann ICRP 38 (1–2):1–197

  36. Protection R (2007) International commission on radiological protection, ICRP publication 103. Ann ICRP 37(2–4):1–332

    Google Scholar 

  37. Reubi JC, Wenger S, Schmuckli-Maurer J, Schaer J-C, Gugger M (2002) Bombesin receptor subtypes in human cancers: detection with the universal radioligand 125I-[d-TYR6, β-ALA11, PHE13, NLE14] bombesin(6–14). Clin Cancer Res 8:1139–1146

    CAS  Google Scholar 

  38. Maecke HR, Hofmann M, Haberkorn U (2005) 68Ga-labeled peptides in tumor imaging. J Nucl Med 46:172S–178S

    CAS  Google Scholar 

  39. Breeman WAP, de Jong M, Erion JL, Bugaj JE, Srinivasan A, Bernard BF, Kwekkeboom DJ, Visser TJ, Krenning EP (2002) Preclinical comparison of 111In-labeled DTPA- or DOTA-bombesin analogs for receptor-targeted scintigraphy and radionuclide therapy. J Nucl Med 43:1650–1656

    CAS  Google Scholar 

  40. Shanehsazzadeh S, Jalilian AR, Sadeghi HR, Allahverdi M (2009) Determination of human absorbed dose of 67GA-DTPA-ACTH based on distribution data in rats. Radiat Prot Dosim 134:79–86

    Article  CAS  Google Scholar 

  41. Lu J-Q, Ichise M, Liow J-S, Ghose S, Vines D, Innis RB (2004) Biodistribution and radiation dosimetry of the serotonin transporter ligand 11C-DASB determined from human whole-body PET. J Nucl Med 45:1555–1559

    CAS  Google Scholar 

  42. Wilson AA, Ginovart N, Hussey D, Meyer J, Houle S (2002) In vitro and in vivo characterisation of 11C]-DASB: a probe for in vivo measurements of the serotonin transporter by positron emission tomography. Nucl Med Biol 29:509–515

    Article  CAS  Google Scholar 

  43. de Jong M, Breeman WA, Bernard BF, Bakker WH, Schaar M, van Gameren A, Bugaj JE, Erion J, Schmidt M, Srinivasan A (2001) [177Lu-DOTA0, Tyr3] octreotate for somatostatin receptor-targeted radionuclide therapy. Int J Cancer 92:628–633

    Article  Google Scholar 

  44. Lewis JS, Wang M, Laforest R, Wang F, Erion JL, Bugaj JE, Srinivasan A, Anderson CJ (2001) Toxicity and dosimetry of 177Lu-DOTA-Y3-octreotate in a rat model. Int J Cancer 94:873–877

    Article  CAS  Google Scholar 

  45. Kesner AL, Hsueh W-A, Czernin J, Padgett H, Phelps ME, Silverman DH (2008) Radiation dose estimates for [18F] 5-fluorouracil derived from PET-based and tissue-based methods in rats. Mol Imaging Biol 10:341–348

    Article  Google Scholar 

Download references

Acknowledgments

The authors should thank to Prof. Micheal G. Stabin for his supportive comments about this paper. This work was supported by Radiation Application research School of Nuclear Science & Technology Research Institute (NSTRI).

Conflict of interests

The authors declare that they have no conflict of interest.

Financial support

This work was supported by Radiation Application Research School of Nuclear Science & Technology Research Institute (NSTRI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Shanehsazzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shanehsazzadeh, S., Lahooti, A., Shirmardi, S.P. et al. Comparison of estimated human effective dose of 67Ga- and 99mTc-labeled bombesin based on distribution data in mice. J Radioanal Nucl Chem 305, 513–520 (2015). https://doi.org/10.1007/s10967-015-3995-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-3995-7

Keywords

Navigation