Log in

Adsorption of uranium from aqueous solution by graphene oxide nanosheets supported on sepiolite

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Adsorptive behavior of uranium from aqueous solution on graphene oxide supported on sepiolite composites (GO@sepiolite composites) as a function of pH, ionic strength, temperature and initial uranium concentration was carried out by the batch techniques. GO@sepiolite composites was synthesized and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and potentiometric acid–base titration. According to XRD patterns and SEM images, the graphene oxide nanosheets were grafted on sepiolite surface successfully. The macroscopic results showed that the adsorption of uranium on GO@sepiolite composites was significantly depended on pH, whereas no effect of ionic strength on uranium adsorption at high pH and high ionic strength conditions was observed. The uptake equilibrium is best described by Langmuir adsorption isotherm, and the maximum adsorption capacity (Qe) of GO@sepiolite composites at pH 5.0 and T = 298 K were calculated to be 161.29 mg/g. Thermodynamic results indicated that the adsorption of uranium on GO@sepiolite composites is the spontaneous and exothermic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sylwester E, Hudson E, Allen P (2000) Geochim Cosmochim Acta 64:2431

    Article  CAS  Google Scholar 

  2. Hyun S, Cho Y, Hahn P, Kim S (2001) J Radioanal Nucl Chem 250:55

    Article  CAS  Google Scholar 

  3. Donat R, Esen K, Cetisli H, Aytas S (2009) J Radioanal Nucl Chem 279:253

    Article  CAS  Google Scholar 

  4. Mckinley J, Zachara J, Smith S, Turner G (1995) Clays Clay Miner 43:586

    Article  CAS  Google Scholar 

  5. Jung J, Hyun S, Lee J, Cho Y, Hahn P (1999) J Radioanal Nucl Chem 242:405

    Article  CAS  Google Scholar 

  6. Venkatesan K, Sukumaran V, Antony M (2004) J Radioanal Nucl Chem 260:443

    Article  CAS  Google Scholar 

  7. Al-Attar L, Dyer A, Blackburn R (2000) J Radioanal Nucl Chem 246:451

    Article  CAS  Google Scholar 

  8. Zhang X, Tao Z (2002) J Radioanal Nucl Chem 254:103

    Article  CAS  Google Scholar 

  9. Aytas S, Akyil S, Eral M (2004) J Radioanal Nucl Chem 260:119

    Article  CAS  Google Scholar 

  10. Kilincarslan A, Akyil S (2005) J Radioanal Nucl Chem 264:541

    Article  CAS  Google Scholar 

  11. Simsek S, Ulusoy U (2012) J Radioanal Nucl Chem 292:41

    Article  CAS  Google Scholar 

  12. Donat R, Cilgi G, Aytas S, Cetisli H (2009) J Radioanal Nucl Chem 279:271

    Article  CAS  Google Scholar 

  13. Kilislioglu A, Aras G (2010) Appl Radiat Isot 68:2016

    Article  CAS  Google Scholar 

  14. Zhao G, Wen T, Yang X, Yang S, Liao J, Hu J, Shao D, Wang X (2012) Dalton Trans 41:6182

    Article  CAS  Google Scholar 

  15. Sun Y, Wang Q, Chen C, Tan X, Wang X (2012) Environ Sci Technol 46:6020

    Article  CAS  Google Scholar 

  16. Hummers W, Offeman R (1958) J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  17. Fan X, Peng W, Li Y, Li X, Wang S, Zhang G, Zhang F (2008) Adv Mater 20:4490

    Article  CAS  Google Scholar 

  18. Abbasi W, Streat M (1994) Sep Sci Technol 29:1217

    Article  CAS  Google Scholar 

  19. Bargar J, Reitmeyer R, Lenhart J, Davis J (2000) Geochim Cosmochim Acta 64:2737

    Article  CAS  Google Scholar 

  20. Guo Z, Yan Z, Tao Z (2004) J Radioanal Nucl Chem 261:157

    Article  CAS  Google Scholar 

  21. Olguin M, SolacheRios M, Acosta D, Bulbulian S (1997) J Radioanal Nucl Chem 218:65

    Article  CAS  Google Scholar 

  22. Bontea D, Mita C, Humelnicu D (2006) J Radioanal Nucl Chem 268:305

    Article  CAS  Google Scholar 

  23. Ding D, Liu X, Hu N, Li G, Wang Y (2012) J Radioanal Nucl Chem 293:735

    Article  CAS  Google Scholar 

  24. Pulhani V, Dafauti S, Hegde A (2012) J Radioanal Nucl Chem 294:299

    Article  CAS  Google Scholar 

  25. Parfitt R, Russell J (1977) J Soil Sic 28:297

    Article  CAS  Google Scholar 

  26. He L, Zelazny L, Baligar V, Ritchey K, Martens D (1997) Soil Sci Soc Am J 61:784

    Article  CAS  Google Scholar 

  27. Aytas S, Akyil S, Aslani M, Aytekin U (1999) J Radioanal Nucl Chem 240:973

    Article  CAS  Google Scholar 

  28. Sun Y, Yang S, Sheng G, Guo Z, Tan X, Xu J, Wang X (2011) Sep Purif Technol 83:196

    Article  Google Scholar 

  29. Genc-Fuhrman H, Tjell J, Mcconchie D (2004) Environ Sci Technol 38:2428

    Article  CAS  Google Scholar 

  30. Wang X, Lu J, **ng B (2008) Environ Sci Technol 42:3207

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this research was supported from National Natural Science Foundation of China (40372109, 41003015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jitao Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, H., Zeng, K. & Yu, J. Adsorption of uranium from aqueous solution by graphene oxide nanosheets supported on sepiolite. J Radioanal Nucl Chem 298, 599–603 (2013). https://doi.org/10.1007/s10967-012-2406-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-2406-6

Keywords

Navigation