Log in

Synergistic evolution of stable bioactivity and better mechanical strength in polyvinyl alcohol and sweet lime peel film

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The present study discloses the evolution of bioactivity with improved chemical stability in the composite film of polyvinyl alcohol (PVA) and sweet lime peel (SLP) powder along with biodegradability and improved hardness due to the structural miscibility between constituent’s polymer during solution blending. The evolved structure, different properties, bioactivity, and synergistic effect between PVA and SLP were established with the help of spectrochemical results, microscopic image, and physio-mechanical properties, i.e. thickness, chemical stability, water vapor transmission rate, heat seal-ability, and shelf-life. The result reveals the long-term presence of the bioactive compound of SLP by 200%, antimicrobial nature against S. aureus and E. coli, improved tensile strength, and heat stability in the reported film. Further, the prepared film of SLP and PVA with optimum properties and 0.12 mm thickness was used for packing sprouts as an alternative to the currently used non-biodegradable film with a comparable life span of seven days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Goel P, Arora R, Haleem R, Shukla SK (2023) Advances in bio-degradable polymer composites-based packaging material. Chem Afr 6(1):95–115. https://doi.org/10.1007/s42250-022-00404-6

    Article  CAS  Google Scholar 

  2. Tassinari G, Bassani A, Spigno G, Soregaroli C, Drabik D (2023) Do biodegradable food packaging films from agro-food waste pay off? A cost-benefit analysis in the context of Europe. Sci Total Environ 856:159101. https://doi.org/10.1016/j.matpr.2023.01.042

    Article  CAS  PubMed  Google Scholar 

  3. Tyagi V, Thakur A (2023) Carboxymethyl cellulose-polyvinyl alcohol based materials: a review. Mater Today: Proc. https://doi.org/10.1016/j.matpr.2023.01.042

    Article  PubMed  Google Scholar 

  4. Koundal A, Chopra B, Arora R, Haleem R, Shukla SK (2023) Single stage extraction of sulfonated cellulose from rice husk for packaging application. Chem Afr 6(1):259–266. https://doi.org/10.1007/s42250-022-00494-2

    Article  CAS  Google Scholar 

  5. Shukla SK, Rizwana A, Bharadvaja GC (2019) Dubey, micro-cellulose sheet and polyvinyl alcohol blended film for active packaging. Chem Afr 2:723–732. https://doi.org/10.1007/s42250-019-00088-5

    Article  CAS  Google Scholar 

  6. Nagarkar R, Patel J (2019) Polyvinyl alcohol: a comprehensive study. Acta Sci Pharm Sci 3(4):34–44

    Google Scholar 

  7. Aslam M, Kalyar MA, Raza ZA (2018) Polyvinyl alcohol: a review of research status and use of polyvinyl alcohol based nanocomposites. Polym Eng Sci 58(12):2119–2132. https://doi.org/10.1002/pen.24855

    Article  CAS  Google Scholar 

  8. Arroyo BJ, Santos AP, de Melo ED, Campos A, Lins L, Boyano-Orozco LC (2019) Bioactive compounds and their potential use as ingredients for food and its application in food packaging. In Bioactive Compounds: Woodhead Publishing 143–156. https://doi.org/10.1016/B978-0-12-814774-0.00008-6

  9. Xue W, Zhu J, Sun P, Yang F, Wu H, Li W (2023) Permeability of biodegradable film comprising biopolymers derived from marine origin for food packaging application: a review. Trends Food Sci. https://doi.org/10.1016/j.tifs.2023.05.001

    Article  Google Scholar 

  10. Jeong D, Park H, Jang BK, Ju Y, Shin MH, Oh EJ, Lee EJ, Kim SR (2021) Recent advances in the biological valorization of citrus peel waste into fuels and chemicals. Bioresour Technol 323:124603. https://doi.org/10.1016/j.biortech.2020.124603

    Article  CAS  PubMed  Google Scholar 

  11. Sharma S, Majumdar RK, Mehta NK (2023) Bioactive compounds from the mosambi (Citrus limetta) peel and their fortification into tilapia surimi improve gelling and textural properties. Biomass Conv Bioref 1–13. https://doi.org/10.1007/s13399-023-04142-8

  12. Singha P, Rani R, Badwaik LS (2023) Sweet lime peel-, polyvinyl alcohol-and starch-based biodegradable film: Preparation and characterization. Polym Bull 80(1):589–605. https://doi.org/10.1007/s00289-021-04040-x

    Article  CAS  Google Scholar 

  13. Arafat Y, Altemimi A, Pratap-Singh A, Badwaik LS (2021) Active biodegradable films based on sweet lime peel residue and its effect on quality of fish fillets. Polymers 13(8):1240. https://doi.org/10.3390/polym13081240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Singha P, Rani R, Badwaik LS (2023) Influence of sugarcane bagasse fibre on the properties of sweet lime peel-and polyvinyl alcohol-based biodegradable film. Sustain Food Technol. https://doi.org/10.1039/D3FB00052D

    Article  Google Scholar 

  15. Changmai NJ, Badwaik LS (2021) Effect of polyvinyl alcohol, starch and modified bee wax on properties of sweet lime pomace based biodegradable containers. J Package Technol Res 5(2):107–114. https://doi.org/10.1007/s41783-021-00116-1

    Article  Google Scholar 

  16. Ahmad A, Dubey P, Younis K, Yousuf O (2022) Mosambi (Citrus limetta) peel and Sago based biodegradable film: Development and characterization of physical, water barrier and biodegradation properties. Bioresour Technol Rep 18:101016. https://doi.org/10.1016/j.biteb.2022.101016

    Article  CAS  Google Scholar 

  17. Khan OA, Zaidi S, Islam RU, Naseem S, Junaid PM (2023) Enhanced shelf-life of peach fruit in alginate based edible coating loaded with TiO2 nanoparticles. Prog Org Coat 182:107688. https://doi.org/10.1016/j.porgcoat.2023.107688

    Article  CAS  Google Scholar 

  18. Ali A, Ahmed S (2021) Eco-friendly natural extract loaded antioxidative chitosan/polyvinyl alcohol based active films for food packaging. Heliyon 7(3). https://doi.org/10.1016/j.heliyon.2021.e06550

  19. Eelager MP, Masti SP, Chougale RB, Hiremani VD, Narasgoudar SS, Dalbanjan NP, SK PK (2023) Evaluation of mechanical, antimicrobial, and antioxidant properties of vanillic acid induced chitosan/poly (vinyl alcohol) active films to prolong the shelf life of green chilli. Int J Biol Macromol 232:123499. https://doi.org/10.1016/j.ijbiomac.2023.123499

    Article  CAS  PubMed  Google Scholar 

  20. Terzioğlu P, Güney F, Parın FN, Şen İ, Tuna S (2021) Biowaste orange peel incorporated chitosan/polyvinyl alcohol composite films for food packaging applications. Food Packag Shelf Life 30:100742. https://doi.org/10.1016/j.fpsl.2021.100742

    Article  CAS  Google Scholar 

  21. Borah PP, Das P, Badwaik LS (2017) Ultrasound treated potato peel and sweet lime pomace based biopolymer film development. Ultrason Sonochem 36:11–19. https://doi.org/10.1016/j.ultsonch.2016.11.010

    Article  CAS  PubMed  Google Scholar 

  22. Yun D, Liu J (2022) Recent advances on the development of food packaging films based on citrus processing wastes: A review. J Agric Food Res 9:100316. https://doi.org/10.1016/j.jafr.2022.100316

    Article  CAS  Google Scholar 

  23. Shukla SK (2012) Synthesis of polyaniline grafted cellulose suitable for humidity sensing. Ind J Eng Mater Sci 19:417–420. http://nopr.niscpr.res.in/handle/123456789/15814

  24. Gupta AP, Agrawal H, Shukla SK, Bhardwaj V (2004) Studies on PVC based chelating inorganic ion exchange resin membrane sensor for neodymium (III) ion. J Ind Chem Technol 11:500–503. http://nopr.niscpr.res.in/handle/123456789/18827

  25. Abdollahzadeh E, Nematollahi A, Hosseini H (2021) Composition of antimicrobial edible films and methods for assessing their antimicrobial activity: a review. Trends Food Sci 110:291–303. https://doi.org/10.1016/j.tifs.2021.01.084

    Article  CAS  Google Scholar 

  26. Oyeoka HC, Ewulonu CM, Nwuzor IC, Obele CM, Nwabanne JT (2021) Packaging and degradability properties of polyvinyl alcohol/gelatin nanocomposite films filled water hyacinth cellulose nanocrystals. J Bioresour Bioprod 6(2):168–185. https://doi.org/10.1016/j.jobab.2021.02.009

    Article  CAS  Google Scholar 

  27. Guo X, Wang X, Wei Y, Liu P, Deng X, Lei Y, Zhang J (2024) Preparation and properties of films loaded with cellulose nanocrystals stabilized Thymus vulgaris essential oil Pickering emulsion based on modified tapioca starch/polyvinyl alcohol. Food Chem 435:137597. https://doi.org/10.1016/j.foodchem.2023.137597

    Article  CAS  PubMed  Google Scholar 

  28. Mansur HS, Sadahira CM, Souza AN, Mansur AA (2008) FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater Sci Eng C 28(4):539–548. https://doi.org/10.1016/j.msec.2007.10.088

    Article  CAS  Google Scholar 

  29. Shukla SK (2022) Preparation and characterization of rice husk derived cellulose and polyvinyl alcohol blended heat sealable packaging film. Indian J Chem Technol (IJCT). 28(4):453–459. https://doi.org/10.56042/ijct.v28i4.50183

    Article  Google Scholar 

  30. https://www.sigmaaldrich.com/IN/en/technical-documents/technical-article/analytical-chemistry/photometry-and-reflectometry/ir-spectrum-table

  31. Thakur BR, Singh RK, Handa AK (1997) Chemistry and uses of pectin–a review. Crit Rev Food Sci Nutr 37(1):47–73. https://doi.org/10.1080/10408399709527767. PMID: 9067088

    Article  CAS  PubMed  Google Scholar 

  32. Demir D, Ceylan S, Göktürk D, Bölgen N (2021) Extraction of pectin from albedo of lemon peels for preparation of tissue engineering scaffolds. Polym Bull 78:2211–2226. https://doi.org/10.1007/s00289-020-03208-1

    Article  CAS  Google Scholar 

  33. Assender HE, Windle AH (1998) Crystallinity in poly (vinyl alcohol). 1. An X-ray diffraction study of atactic PVOH. Polymer 39(18):4295–4302. https://doi.org/10.1016/S0032-3861(97)10296-8

    Article  CAS  Google Scholar 

  34. Gomaa MM, Hugenschmidt C, Dickmann M, Abdel-Hady EE, Mohamed HF, Abdel-Hamed MO (2018) Crosslinked PVA/SSA proton exchange membranes: Correlation between physiochemical properties and free volume determined by positron annihilation spectroscopy. Phys Chem Chem Phys 20(44):28287–28299. https://doi.org/10.1039/C8CP05301D

    Article  CAS  PubMed  Google Scholar 

  35. Acharjee M, Zerin N, Ishma T, Mahmud MR (2023) In-vitro anti-bacterial activity of medicinal plants against Urinary Tract Infection (UTI) causing bacteria along with their synergistic effects with commercially available antibiotics. New Microbes New Infect 51(2023):101076. https://doi.org/10.1016/j.nmni.2022.101076

    Article  CAS  PubMed  Google Scholar 

  36. Xu D, Chen T, Liu Y (2021) The physical properties, antioxidant and antimicrobial activity of chitosan–gelatin edible films incorporated with the extract from hop plant. Polym Bull 78:3607–3624. https://doi.org/10.1007/s00289-020-03294-1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Principal, Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi-110075 for permission to work in the college laboratory. One of author (RA) is also thankful to the University Grant Commission, New Delhi for granting a research fellowship.

Funding

UGC, New Delhi, JRF, Ritika Arora.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rizwana Haleem or Saroj Kr Shukla.

Ethics declarations

Conflict of interest

Authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 1167 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, R., Agarwal, A., Haleem, R. et al. Synergistic evolution of stable bioactivity and better mechanical strength in polyvinyl alcohol and sweet lime peel film. J Polym Res 31, 110 (2024). https://doi.org/10.1007/s10965-024-03963-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-024-03963-z

Keywords

Navigation