Log in

Study on viscoelasticity and dam** properties of OSA/PAAM hydrogel

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The problems of vibration and noise have seriously affected people’s production and life. Hydrogel can be used as dam** material because of its good viscoelasticity, but the current dam** material is difficult to meet the needs of actual production and life because of the lack of wide dam** temperature and frequency range and high loss factor. In this work, ammonium persulfate was used as both initiator and oxidant to form a mixed double network hydrogel of polyacrylamide and oxidized sodium alginate. The double network hydrogel prepared by this method has good adhesion and mechanical properties. In addition, due to the adjustable viscoelasticity of the hydrogel, the hydrogel shows excellent dam** properties. When the concentration of MBA is 0.02%, it can reach the temperature range of 0-125 ℃, and the dam** factor is more than 0.3. The visualization experiment proves the practical application effect of the hydrogel, so it is expected to be used as a dam** material in dam**, noise reduction and other fields in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data will be available upon request to the corresponding author.

References

  1. ** and self-healable ionic elastomer from dynamic phase separation of sticky fluorinated polymers. Adv Mater 35:e2209581

    Article  PubMed  Google Scholar 

  2. Jia XQ, Li SY, Miu HJ, Yang T, Rao K, Wu DY, Cui BL, Ou JL, Zhu ZC (2020) Carbon nanomaterials: a new sustainable solution to reduce the emerging environmental pollution of turbomachinery noise and vibration. Front Chem 8:683

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  3. Zhang W, Ma F, Meng Z, Kong L, Dai Z, Zhao G, Zhu A, Liu XY, Lin N (2021) Green synthesis of waterborne polyurethane for high dam** capacity, macromol. Macromol Chem Phys 222:2000457

    Article  CAS  Google Scholar 

  4. Jiang X, Qin R, Wang M, Xu M, Sheng Y, Lu X (2021) Controllable wide temperature range and high dam** polyurethane elastomer based on disulfide bond and dangling chain. Polym Adv Technol 32:2185

    Article  CAS  Google Scholar 

  5. Shen L, Ren Z, Xu J, Pan L, Lin Y, Bai H (2022) Dry friction dam** mechanism of flexible microporous metal rubber based on cell group energy dissipation mechanism. Friction 11:259

    Article  Google Scholar 

  6. Xu K, Hu Q, Wang J, Zhou H, Chen J (2019) Towards a stable and high-performance hindered phenol/polymer-based dam** material through structure optimization and dam** mechanism revelation. Polymers 11:884

    Article  PubMed  PubMed Central  Google Scholar 

  7. Liu C, Fan J, Chen Y (2019) Design of regulable chlorobutyl rubber dam** materials with high-dam** value for a wide temperature range. Polym Test 79:106003

    Article  Google Scholar 

  8. Zhao D, Feng M, Zhang L, He B, Chen X, Sun J (2021) Facile synthesis of self-healing and layered sodium alginate/polyacrylamide hydrogel promoted by dynamic hydrogen bond. Carbohydr Polym 256:117580

    Article  CAS  PubMed  Google Scholar 

  9. Shaid Sujon MA, Islam A, Nadimpalli VK (2021) Dam** and sound absorption properties of polymer matrix composites: a review. Polym Test 104:107388

    Article  CAS  Google Scholar 

  10. Qi X, ** applications. RSC Adv 9:42367

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  11. Zhou J, Li H, Lu X (2018) Dam** elastomer with broad temperature range based on irregular networks containing hyperbranched polyester and dangling chains. Polym Adv Technol 29:2308

    Article  CAS  Google Scholar 

  12. Tontiwattanakul K, Sanguansin J, Ratanavaraha V, Sata V, Limkatanyu S, Sukontasukkul P (2021) Effect of viscoelastic polymer on dam** properties of precast concrete panel. Heliyon 7:e06967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang F, Liao J, Huang C, Yu H, Yan J, Li H (2022) Study on the dam** dynamics characteristics of a viscoelastic dam** material. Processes 10:635

    Article  Google Scholar 

  14. Jaya Prakash N, Sarkar SS, Kandasubramanian B (2023) Emerging strategies in stimuli-responsive silk architectures. Macromol Biosci 23:e2200573

    Article  PubMed  Google Scholar 

  15. Bertocchi MJ, Vang P, Balow RB, Wynne JH, Lundin JG (2019) Enhanced mechanical dam** in electrospun polymer fibers with liquid cores: applications to sound dam**. ACS Appl. Polym. Mater. 1:2068

    Article  CAS  Google Scholar 

  16. Yuan Z, Ding J, Zhang Y, Huang B, Song Z, Meng X, Ma X, Gong X, Huang Z, Ma S, **ang S, Xu W (2022) Components, mechanisms and applications of stimuli-responsive polymer gels. Eur Polym J 177:111473

    Article  CAS  Google Scholar 

  17. Shah LA, Gul K, Ali I, Khan A, Muhammad S, Ullah M, Bibi I, Sultana S (2022) Poly (n-vinyl formamide-co-acrylamide) hydrogels: synthesis, composition and rheologyf. Iran Polym J 31:845

    Article  CAS  Google Scholar 

  18. Shou T, Hu S, Wu Y, Tang X, Fu G, Zhao X, Zhang L (2021) Biobased and recyclable polyurethane for room-temperature dam** and three-dimensional printing. ACS Omega 6:30003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huang S, Kong X, **ong Y, Zhang X, Chen H, Jiang W, Niu Y, Xu W, Ren C (2020) An overview of dynamic covalent bonds in polymer material and their applications. Eur Polym J 141:110094

    Article  CAS  Google Scholar 

  20. Zhang H, Li S, Zhang Z, Luo H, Wang Y (2020) A five-parameter fractional derivative temperature spectrum model for polymeric dam** materials. Polym Test 89:106654

    Article  CAS  Google Scholar 

  21. Zhou C, Zhao X, **ong Y, Tang Y, Ma X, Tao Q, Sun C, Xu W (2022) A review of etching methods of mXene and applications of MXene conductive hydrogels. Eur Polym J 167:111063

    Article  CAS  Google Scholar 

  22. Ma X, Zhou X, Ding J, Huang B, Wang P, Zhao Y, Mu Q, Zhang S, Ren C, Xu W (2022) Hydrogels for underwater adhesion: adhesion mechanism, design strategies and applications. J Mater Chem A 10:11823

    Article  CAS  Google Scholar 

  23. Zhou X, Zhao X, Wang Y, Wang P, Jiang X, Song Z, Ding J, Liu G, Li X, Sun W, Xu W (2023) Gel-based strain/pressure sensors for underwater sensing: sensing mechanisms, design strategies and applications. Compos B Eng 255:110631

    Article  Google Scholar 

  24. Geethamma VG, Asaletha R, Kalarikkal N, Thomas S (2014) Vibration and sound dam** in polymers. Resonance 19:821

    Article  CAS  Google Scholar 

  25. Patel H, Chen J, Hu Y, Erturk A (2022) Photo-responsive hydrogel-based re-programmable metamaterials. Sci Rep 12:13033

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  26. Park B, Shin JH, Ok J, Park S, Jung W, Jeong C, Choy S, Jo YJ, Kim T-i (2022) Cuticular pad-inspired selective frequency damper for nearly dynamic noise-free bioelectronics. Science 376:624

    Article  CAS  PubMed  ADS  Google Scholar 

  27. Wu Y, Shah DU, Liu C, Yu Z, Liu J, Ren X, Rowland MJ, Abell C, Ramage MH, Scherman OA (2017) Bioinspired supramolecular fibers drawn from a multiphase self-assembled Hydrogel. Proc Natl Acad Sci USA 114:8163

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  28. Sun Z, Li Z, Qu K, Zhang Z, Niu Y, Xu W, Ren C (2021) A review on recent advances in gel adhesion and their potential applications. J Mol Liq 325:115254

    Article  CAS  Google Scholar 

  29. Sun M, Qiu J, Lu C, ** S, Zhang G, Sakai E (2020) Multi-sacrificial bonds enhanced double network hydrogel with high toughness, resilience, dam**, and notch-insensitivity. Polymers 12:2263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li Z, Meng X, Xu W, Zhang S, Ouyang J, Zhang Z, Liu Y, Niu Y, Ma S, Xue Z, Song A, Zhang S, Ren C (2020) Single network double cross-linker (SNDCL) hydrogels with excellent stretchability, self-recovery, adhesion strength, and conductivity for human motion monitoring. Soft Matter 16:7323

    Article  CAS  PubMed  ADS  Google Scholar 

  31. Liu D, Yin G, Le X, Chen T (2022) Supramolecular topological hydrogels: from material design to applications. Polym Chem 13:1940

    Article  CAS  Google Scholar 

  32. Lin X, Liu Y, Bai A, Cai H, Bai Y, Jiang W, Yang H, Wang X, Yang L, Sun N, Gao H (2019) A viscoelastic adhesive epicardial patch for treating myocardial infarction. Nat Biomed Eng 3:632

    Article  CAS  PubMed  Google Scholar 

  33. Sun M, Qiu J, ** S, Liu W, Sakai E (2020) Visible light induced synthesis of high toughness, self-healing ionic hydrogel and its application in strain sensing. Colloids Surf Physicochem Eng Asp 607:125438

    Article  CAS  Google Scholar 

  34. Li Y, Wang H, Niu Y, Ma S, Xue Z, Song A, Zhang S, Xu W, Ren C (2019) Fabrication of CS/SA double-network hydrogel and application in pH‐controllable drug release. ChemistrySelect 4:14036

    Article  CAS  Google Scholar 

  35. Gomez CG, Rinaudo M, Villar MA (2007) Oxidation of sodium alginate and characterization of the oxidized derivatives. Carbohydr Polym 67:296

    Article  CAS  Google Scholar 

  36. Distler T, Kretzschmar L, Schneidereit D, Girardo S, Goswami R, Friedrich O, Detsch R, Guck J, Boccaccini AR, Budday S (2021) Mechanical properties of cell- and microgel bead-laden oxidized alginate-gelatin hydrogels. Biomater Sci 9:3051

    Article  CAS  PubMed  Google Scholar 

  37. Deepa B, Abraham E, Cordeiro N, Faria M, Primc G, Pottathara Y, Leskovsek M, Gorjanc M, Mozetic M, Thomas S, Pothan LA (2020) Nanofibrils vs nanocrystals bio-nanocomposites based on sodium alginate matrix: an improved-performance study. Heliyon 6:e03266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. ** S, Li K, **a C, Li J (2019) Sodium alginate-assisted route to antimicrobial biopolymer film combined with aminoclay for enhanced mechanical behaviors. Ind Crops Prod 135:271

    Article  CAS  Google Scholar 

  39. Li Y, Wang D, Wen J, Liu J, Zhang D, Li J, Chu H (2021) Ultra-stretchable, variable modulus, shape memory multi-purpose low hysteresis hydrogel derived from solvent‐induced dynamic micelle sea‐island structure. Adv Funct Mater 31:2011259

    Article  CAS  Google Scholar 

  40. Dou Y, Wang ZP, He W, Jia T, Liu Z, Sun P, Wen K, Gao E, Zhou X, Hu X, Li J, Fang S, Qian D, Liu Z (2019) Artificial spider silk from ion-doped and twisted core-sheath hydrogel fibres. Nat Commun 10:5293

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  41. Ma X, Qu K, Zhao X, Wang Y, Zhang X, Zhang X, Zhou X, Ding J, Wang X, Ma L, Xue Z, Niu Y, Xu W, Wu N, Hao J (2023) Oxidized sodium alginate/polyacrylamide hydrogels adhesive for promoting wheat growth. Int J Biol Macromol 253:127450

    Article  CAS  PubMed  Google Scholar 

  42. Chen T, Chen Y, Rehman HU, Chen Z, Yang Z, Wang M, Li H, Liu H (2018) Ultratough, self-healing, and tissue-adhesive hydrogel for wound dressing. ACS Appl Mater Interfaces 10:33523

    Article  CAS  PubMed  Google Scholar 

  43. Gandhi F, Remillat C, Tomlinson G, Austruy J (2007) Constrained-layer dam** with gradient polymers for effectiveness over broad temperature ranges. AIAA J 45:1885

    Article  ADS  Google Scholar 

  44. Yu W, Zhang D, Du M, Zheng Q (2013) Role of graded length side chains up to 18 carbons in length on the dam** behavior of polyurethane/epoxy interpenetrating polymer networks. Eur Polym J 49:1731

    Article  CAS  Google Scholar 

  45. Zhao J, Jiang N, Zhang D, He B, Chen X (2020) Study on optimization of dam** performance and dam** temperature range of silicone rubber by polyborosiloxane gel. Polymers 12:1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu S, Wang S, Sang M, Zhou J, Xuan T, Zhang J, Xuan S, Gong X (2023) Hierarchical polyimide-polyborosiloxane host-guest structure with impact resistance, acoustic and thermal insulation performance for electro-stability applications. Chem Eng J 473:145214

    Article  CAS  Google Scholar 

  47. Li Y, Zhang J, Li J, Guo S (2024) Design of a broadband composite noise reduction metamaterial with integrated vibration reduction and sound absorption and insulation. Mater Des 238:112709

    Article  Google Scholar 

Download references

Funding

National Natural Science Foundation of China (22102067) and Science Fund of Shandong Laboratory of Advanced Materials and Green Manufacturing (Yantai) (AMGM2023F12) and Youth Innovation Technology Support Program of Universities in Shandong Province (2023KJ213).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Linlin Zhong, Songmei Ma or Wenlong Xu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1 Movie S1 and S2: The egg dropped from a height of 1 m to a 4 mm thick dam** hydrogel remains intact (MP4).

Supplementary Material 2 

Supplementary Material 3 Movie S3 and S4: The egg fell from a height of 1 m to 4 mm thick silica gel and broke (MP4)

Supplementary Material 4

Supplementary Material 5 Movie S5 and S6: The egg fell from a height of 1 m to 4 mm thick leather and broke (MP4)

Supplementary Material 6

Supplementary Material 7 Movie S7-S9: Sound absorption performance of our hydrogels compared with blank group, silicone and leather (MP4).

Supplementary Material 8

Supplementary Material 9

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-024-03913-9

Keywords

Navigation