Log in

Chain microstructure of two in-reactor alloy impact polypropylene resins with same stiffness and different toughness

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

It is crucial to establish a relationship between chain microstructure and mechanical performance for the ultimate applications of impact polypropylene. Here, two in-reactor alloy impact polypropylene resins (samples A and B) with same stiffness and different toughness are fractionated into nine fractions (at 35, 80, 100, 105, 110, 115, 120, 125, 140 °C, respectively) using preparative temperature rising elution fractionation (P-TREF). These fractions are characterized with high-temperature gel permeation chromatography (HT-GPC), Fourier transform infrared (FTIR) spectrometer, 13C nuclear magnetic resonance (13C NMR) spectrometer, differential scanning calorimetry (DSC), and thermal fractionation. It is found that both samples are primarily made up of isotactic polypropylene homopolymer, ethylene-propylene rubber (EPR), ethylene-propylene segmented and blocky copolymers. The content and Mw of ethylene-propylene rubber in sample A (16.90 wt%, 500.0k) are higher than those (15.78 wt%, 385.4k) of sample B. Thus, sample A shows better toughness. The crystallinities of the fractions 4–9 in sample A (50.5, 51.0, 60.8, 52.7, 47.2, 48.5%) are higher than the corresponding fractions of sample B (47.8, 49.0, 51.0, 49.1, 46.6, 41.6%). Particularly, the content of high-temperature fractions (115–140 °C, i.e. fractions 6–9) is slightly higher than those of the fractions in sample B, but their molecular weights of the corresponding fractions are lower. Finally, the comprehensive effect leads to the same stiffness of the two samples. Definitely, the above results provide guidance on chain structure for improving mechanical properties of polypropylene with excellent stiff-tough balance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data are available from the corresponding author upon sensible request.

References

  1. Mark HF, Bikales N, Overberger CG, Menges G, Kroschwitz JI (1988) Encyclopedia of polymer science and engineering. John Wiley & Sons

    Google Scholar 

  2. Caveda S, Pérez E, Blázquez-Blázquez E, Peña B, Grieken RV, Suárez I, Benavente R (2017) Polym Test 62:23–32

    Article  CAS  Google Scholar 

  3. Qi D, Wang XF, Fu ZS, Xu JT, Fan ZQ (2007) Polymer 48(20):5905–5916

    Article  Google Scholar 

  4. Cai HJ, Luo XL, Ma DZ, Wang JM, Tan HS (1999) J Appl Polym Sci 71:93–101

    Article  CAS  Google Scholar 

  5. Fan ZQ, Zhang YQ, Xu JT, Wang HT, Feng LX (2001) Polymer 42(13):5559–5566

    Article  CAS  Google Scholar 

  6. Jiang C, Yang Y, Jiang BB, Huang ZL, Liao ZW, Sun JY, Wang JD, Yang YR (2020) J Polym 210(8):12302

    Article  CAS  Google Scholar 

  7. Chen Y, Chen Y, Chen W, Yang DC (2007) Eur Polym J 43(7):2999–3008

    Article  CAS  Google Scholar 

  8. Chen Y, Chen Y, Chen W, Yang DC (2008) J Appl Polym Sci 108(4):2379–2385

    Article  CAS  Google Scholar 

  9. Li CH, Wang ZQ, Liu W, Ji XL, Su ZH (2020) Macromolecules 53(7):2686–2693

    Article  CAS  Google Scholar 

  10. Xu JT, Feng LX (2000) Eur Polym J 36(5):867–878

    Article  CAS  Google Scholar 

  11. Shi L, Liu W, Xue YH, Hong M, Ji XL (2021) Polymer 221:1–11

    Article  Google Scholar 

  12. Mirabella FM Jr (1993) Polymer 34:1729–1735

    Article  CAS  Google Scholar 

  13. Zhang CH, Shangguan YG, Chen RF, Zheng Q (2010) J Appl Polym Sci 119(3):1560–1566

    Article  Google Scholar 

  14. Zhang CH, Shangguan YG, Chen RF, Wu YZ, Chen F, Zheng Q, Hu GH (2010) Polymer 51(21):4969–4977

    Article  CAS  Google Scholar 

  15. Fu ZS, Xu JT, Zhang YZ, Fan ZQ (2005) J Appl Polym Sci 97(2):640–647

    Article  CAS  Google Scholar 

  16. Liu W, Zhang JQ, Hong M, Li P, Xue YH, Chen Q, Ji XL (2020) Polymer 188:122146

  17. Tan HS, Li L, Chen ZN, Song YH, Zheng Q (2005) Polymer 46:3522–3527

    Article  CAS  Google Scholar 

  18. Rungswang W, Saendee P, Thitisuk B, Pathaweeisariyakul T, Cheevasrirungruang W (2003) J Appl Polym Sci 128:3131–3140

    Article  Google Scholar 

  19. Zacur R, Goizueta G, Capiati N (1999) Polym Eng Sci 39:921–929

    Article  CAS  Google Scholar 

  20. Müller AJ, Arnal ML (2005) Prog Polym Sci 30(5):559–603

    Article  Google Scholar 

  21. Fillon B, Wittmann JC, Lotz B, Thierry A (1993) Polym Sci Part B: Polym Phys 31:1383–1393

    Article  CAS  Google Scholar 

  22. Randall JC (1989) Macromol Sci Polym Rev 29:201–317

    Article  Google Scholar 

  23. Sun ZH, Yu FS, Qi YC (1991) Polymer 32:1059–1064

    Article  CAS  Google Scholar 

  24. Fan YD, Zhang CY, Xue YH, Zhang XQ, Ji XL, Bo SQ (2011) Polymer 52(2):557–563

    Article  CAS  Google Scholar 

  25. Han R, Nie M, Bai SB, Wang Q (2013) Polym Bull 70(7):2083–2096

    Article  CAS  Google Scholar 

  26. Mezghani K, Phillips PJ (1995) Polymer 36(12):2407–2411

    Article  CAS  Google Scholar 

  27. Karger-Kocsis J, Kiss L (1987) Polym Eng Sci 27(4):254–262

    Article  CAS  Google Scholar 

  28. Järvelä P, Shucai L, Järvelä PJ (1996) Appl Polym Sci 62(5):813–826

    Article  Google Scholar 

  29. Li Q, Wang YX, Lu Y, Men YF (2022) Polymer 239:124441

    Article  Google Scholar 

  30. Wang C, Li XR, Wang LS, Guo MF, Qiao JL (2008) Polym Mater Sci Eng 24(5):52–59

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Liu or **angling Ji.

Ethics declarations

Conflict of interest

Authors exhibit no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Zhang, Z., Liu, W. et al. Chain microstructure of two in-reactor alloy impact polypropylene resins with same stiffness and different toughness. J Polym Res 30, 364 (2023). https://doi.org/10.1007/s10965-023-03739-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03739-x

Keywords

Navigation