Log in

Staple carbon fabric/polyurethane Janus membranes for photothermal conversion and interfacial steam generation

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this study, a Janus membrane was fabricated by fluorination of staple carbon fabric to make it hydrophobic and coating the bottom layer with hydrophilic polyurethane to develop asymmetric wettability. A second method, the phase-inversion method, was also used to prepare a porous Janus membrane. In this design, the hydrophilic side of the Janus membrane is used toward the waterside to pump water from the bulk to the evaporative region by capillary action and simultaneously serve for thermal management, whereas the hydrophobic layer was utilized on the air side to evaporate water. Subsequently, the photothermal conversion and water evaporation properties of the developed Janus membrane were investigated. The findings showed that the developed staple carbon fabrics coated on a hydrophilic polyurethane Janus membrane (SCF@wPU) presented about 67% water evaporation efficiency under 1 sun illumination. The hydrophilicity and porosity of the polyurethane played a significant role in facilitating water transportation, which further facilitates effective water evaporation. The Janus membrane exhibited outstanding cyclic stability, which is crucial for practical applications. Besides, this Janus membrane also presented better water evaporation performance than existing water evaporators do under 1 sun illumination. In addition, it also showed outstanding water evaporation performance in practical applications, i.e., by presenting a water evaporation efficiency of 60% under natural sunlight in an outdoor experiment. Moreover, this Janus membrane preparation approach is easy to use for large-scale production. It is expected to play a role in environmental remediation, in general, and in water evaporation, in particular.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Li Z, Wang C, Su J, Ling S, Wang W, An M (2019) Fast-growing field of interfacial solar steam generation: evolutional materials, engineered architectures, and synergistic applications. Solar RRL 3:1800206

    Article  Google Scholar 

  2. Srimuk P, Su X, Yoon J, Aurbach D, Presser V (2020) Charge-transfer materials for electrochemical water desalination, ion separation and the recovery of elements. Nat Rev Mater 5:517–538

    Article  CAS  Google Scholar 

  3. Jiang Z, Karan S, Livingston AG (2018) Water transport through ultrathin polyamide nanofilms used for reverse osmosis. Adv Mater 30:1705973

    Article  Google Scholar 

  4. Zhang L, Xu X, Feng J, Bai B, Hu N, Wang H (2021) Waste semi-coke/polydopamine based self-floating solar evaporator for water purification. Sol Energy Mater Sol Cells 230

    Article  CAS  Google Scholar 

  5. Zhang B, Wong PW, An AK (2022) Photothermally enabled MXene hydrogel membrane with integrated solar-driven evaporation and photodegradation for efficient water purification. Chem Eng J 430

    Article  CAS  Google Scholar 

  6. Zhang S, Ma H, Guo D, Guo P, Wang J, Liu M, Wu S, Bao C (2022) Multiscale Preparation of Graphene Oxide/Carbon Nanotube-Based Membrane Evaporators by a Spray Method for Efficient Solar Steam Generation. ACS Applied Nano Materials 5:7198–7207

    Article  CAS  Google Scholar 

  7. Tessema AA, Wu CM, Motora KG (2022) Highly Efficient Solar Light Driven g-C3N4@Cs0. 33WO3 Heterojunction for the Photodegradation of Colorless Antibiotics. ACS Omega 7:38475-38486

  8. Motora KG, Wu C-M, Lin S-T (2023) Novel Ag3PO4@ZIF-8 p-n heterojunction for effective photodegradation of organic pollutants. Journal of Water Process Engineering 52

    Article  Google Scholar 

  9. Motora KG, Wu CM, Rani GM, Yen WT (2022) Effect of ZnO particle size on piezoelectric nanogenerators and mechanical energy harvesting. Express Polym Lett 16

  10. Motora KG, Wu C-M, Xu T-Z, Chala TF, Lai C-C (2020) Photocatalytic, antibacterial, and deodorization activity of recycled triacetate cellulose nanocomposites. Mater Chem Phys 240

    Article  CAS  Google Scholar 

  11. Shi Y, Zhang C, Wang Y, Cui Y, Wang Q, Liu G, Gao S, Yuan Y (2021) Plasmonic silver nanoparticles embedded in flexible three-dimensional carbonized melamine foam with enhanced solar-driven water evaporation. Desalination 507

    Article  CAS  Google Scholar 

  12. Yang F, Chen J, Ye Z, Ding D, Myung NV, Yin Y (2021) Ni-based plasmonic/magnetic nanostructures as efficient light absorbers for steam generation. Adv Func Mater 31:2006294

    Article  CAS  Google Scholar 

  13. Wang X, Li X, Liu G, Li J, Hu X, Xu N, Zhao W, Zhu B, Zhu J (2019) An interfacial solar heating assisted liquid sorbent atmospheric water generator. Angew Chem 131:12182–12186

    Article  Google Scholar 

  14. Meng L-Y, Park S-J (2014) Superhydrophobic carbon-based materials: a review of synthesis, structure, and applications. Carbon letters 15:89–104

    Article  Google Scholar 

  15. Kim T, Lee J, Lee K-H (2014) Microwave heating of carbon-based solid materials. Carbon letters 15:15–24

    Article  Google Scholar 

  16. Naseem S, Wu C-M, Chala TF (2019) Photothermal-responsive tungsten bronze/recycled cellulose triacetate porous fiber membranes for efficient light-driven interfacial water evaporation. Sol Energy 194:391–399

    Article  CAS  Google Scholar 

  17. Wu C-M, Naseem S, Chou M-H, Wang J-H, Jian Y-Q (2019) Recent advances in tungsten-oxide-based materials and their applications. Frontiers in Materials 6:49

    Article  Google Scholar 

  18. Chala TF, Wu C-M, Chou M-H, Guo Z-L (2018) Melt electrospun reduced tungsten oxide/polylactic acid fiber membranes as a photothermal material for light-driven interfacial water evaporation. ACS applied materials & interfaces 10:28955–28962

    Article  CAS  Google Scholar 

  19. Wu C-M, Motora KG, Kuo D-H, Lai C-C, Huang B-R, Saravanan A (2021) Cesium tungsten bronze nanostructures and their highly enhanced hydrogen gas sensing properties at room temperature. Int J Hydrog Energy 46:25752–25762

    Article  Google Scholar 

  20. Chala TF, Wu C-M, Motora KG (2019) RbxWO3/Ag3VO4 nanocomposites as efficient full-spectrum (UV, visible, and near-infrared) photocatalysis. J Taiwan Inst Chem Eng 102:465–474

    Article  CAS  Google Scholar 

  21. Zou Y, Chen X, Guo W, Liu X, Li Y (2020) Flexible and robust polyaniline composites for highly efficient and durable solar desalination. ACS Applied Energy Materials 3:2634–2642

    Article  CAS  Google Scholar 

  22. Meng K, Zhao S, Zhou Y, Wu Y, Zhang S, He Q, Wang X, Zhou Z, Fan W, Tan X (2020) A wireless textile-based sensor system for self-powered personalized health care. Matter 2:896–907

    Article  Google Scholar 

  23. Motora KG, Wu CM, Chang CC, Liao JH (2021) NIR Light Stimulated Self-Healing Reduced Tungsten Oxide/Polyurethane Nanocomposite Based on the Diels− Alder Reaction. Macromol Mater Eng 306:2100438

    Article  CAS  Google Scholar 

  24. Umapathi R, Kumar K, Ghoreishian SM, Rani GM, Park SY, Huh YS, Venkatesu P (2022) Tunnelling the structural insights between poly (N-isopropylacrylamide) and imidazolium sulfate ionic liquids. J Mol Liq 360

    Article  CAS  Google Scholar 

  25. Umapathi R, Khan I, Coutinho JA, Venkatesu P (2020) Unravelling the interactions between biomedical thermoresponsive polymer and biocompatible ionic liquids. J Mol Liq 300

    Article  CAS  Google Scholar 

  26. Umapathi R, Reddy PM, Rani A, Venkatesu P (2018) Influence of additives on thermoresponsive polymers in aqueous media: a case study of poly (N-isopropylacrylamide). Phys Chem Chem Phys 20:9717–9744

    Article  CAS  PubMed  Google Scholar 

  27. Motora KG, Wu CM, Naseem S (2021) Magnetic recyclable self-floating solar light-driven WO2.72/Fe3O4 nanocomposites immobilized by Janus membrane for photocatalysis of inorganic and organic pollutants. J Industrial Eng Chem 102:25–34

  28. Motora KG, Wu CM (2020) Magnetically separable highly efficient full-spectrum light-driven WO2. 72/Fe3O4 nanocomposites for photocatalytic reduction of carcinogenic chromium (VI) and organic dye degradation. J Taiwan Ins Chem Eng 117:123-132

  29. Motora KG, Wu CM, Chala TF, Chou MH, Kuo CF, Koinkar P (2020) Highly efficient photocatalytic activity of Ag3VO4/WO2.72 nanocomposites for the degradation of organic dyes from the ultraviolet to near-infrared regions. Appl Surf Sci 512:145618

  30. Ranjith KS, Vilian AE, Ghoreishian SM, Umapathi R, Huh YS, Han Y-K (2021) An ultrasensitive electrochemical sensing platform for rapid detection of rutin with a hybridized 2D–1D MXene-FeWO4 nanocomposite. Sensors and Actuators B: Chemical 344

    Article  CAS  Google Scholar 

  31. Yang Y, Zhao R, Zhang T, Zhao K, **ao P, Ma Y, Ajayan PM, Shi G, Chen Y (2018) Graphene-based standalone solar energy converter for water desalination and purification. ACS nano 12:829–835

    Article  CAS  PubMed  Google Scholar 

  32. Rawat P, Sharma PK, Malik V, Umapathi R, Kaushik N, Rhyee J-S (2022) Emergence of high-performing and ultra-fast 2D-graphene nano-biosensing system. Mater Lett 308

    Article  CAS  Google Scholar 

  33. Danial WH, Abdul Majid Z (2022) Recent advances on the enhanced thermal conductivity of graphene nanoplatelets composites: a short review. Carbon Lett 32:1411-1424

  34. Fang W, Zhao L, Chen H, He X, Li W, Du X, Sun Z, Zhang T, Shen Y (2019) Graphene oxide foam fabricated with surfactant foaming method for efficient solar vapor generation. J Mater Sci 54:12782–12793

    Article  CAS  Google Scholar 

  35. Mokgohloa M, Ogunlaja AS (2022) Synthesis and characterization of ethylenediamine functionalized graphene oxide-modified UiO-66-NH2 for quinoline removal. Carbon Letters 32:1689–1702

    Article  Google Scholar 

  36. Zhuang P, Fu H, Xu N, Li B, Xu J, Zhou L (2020) Free-standing reduced graphene oxide (rGO) membrane for salt-rejecting solar desalination via size effect. Nanophotonics 9:4601–4608

    Article  CAS  Google Scholar 

  37. Yin Z, Wang H, Jian M, Li Y, **a K, Zhang M, Wang C, Wang Q, Ma M, Zheng Q-S (2017) Extremely black vertically aligned carbon nanotube arrays for solar steam generation. ACS Appl Mater Interf 9:28596–28603

    Article  CAS  Google Scholar 

  38. Wang H, Du A, Ji X, Zhang C, Zhou B, Zhang Z, Shen J (2019) Enhanced photothermal conversion by hot-electron effect in ultrablack carbon aerogel for solar steam generation. ACS Appl Mater Interf 11:42057–42065

    Article  CAS  Google Scholar 

  39. Li H, He Y, Hu Y, Wang X (2018) Commercially available activated carbon fiber felt enables efficient solar steam generation. ACS applied materials & interfaces 10:9362–9368

    Article  CAS  Google Scholar 

  40. Kim J, Kwon W, Bai BC, Jeong E (2022) Recycling of cotton clothing into activated carbon fibers. Carbon Lett 32:1315–1327

    Article  Google Scholar 

  41. Zhang W-M, Yan J, Su Q, Han J, Gao J-F (2022) Hydrophobic and porous carbon nanofiber membrane for high performance solar-driven interfacial evaporation with excellent salt resistance. J Colloid Interface Sci 612:66–75

    Article  CAS  PubMed  Google Scholar 

  42. Li T, Fang Q, ** X, Chen Y, Liu F (2019) Ultra-robust carbon fibers for multi-media purification via solar-evaporation. J Mater Chem A 7:586–593

    Article  CAS  Google Scholar 

  43. Yan J, **ao W, Chen L, Wu Z, Gao J, Xue H (2021) Superhydrophilic carbon nanofiber membrane with a hierarchically macro/meso porous structure for high performance solar steam generators. Desalination 516

    Article  CAS  Google Scholar 

  44. Tong D, Song B (2022) A high-efficient and ultra-strong interfacial solar evaporator based on carbon-fiber fabric for seawater and wastewater purification. Desalination 527

    Article  CAS  Google Scholar 

  45. Wu Z, Yin K, Wu J, Zhu Z, Duan J-A, He J (2021) Recent advances in femtosecond laser-structured Janus membranes with asymmetric surface wettability. Nanoscale 13:2209–2226

    Article  CAS  PubMed  Google Scholar 

  46. Higgins M, Rahmaan AS, Devarapalli RR, Shelke MV, Jha N (2018) Carbon fabric based solar steam generation for waste water treatment. Sol Energy 159:800–810

    Article  CAS  Google Scholar 

  47. Wu Z, Pittman CU Jr, Gardner SD (1995) Nitric acid oxidation of carbon fibers and the effects of subsequent treatment in refluxing aqueous NaOH. Carbon 33:597–605

    Article  CAS  Google Scholar 

  48. Huang S, Long Y, Yi H, Yang Z, Pang L, ** Z, Liao Q, Zhang L, Zhang Y, Chen Y (2019) Multifunctional molybdenum oxide for solar-driven water evaporation and charged dyes adsorption. Appl Surf Sci 491:328–334

    Article  CAS  Google Scholar 

  49. Finnerty C, Zhang L, Sedlak DL, Nelson KL, Mi B (2017) Synthetic graphene oxide leaf for solar desalination with zero liquid discharge. Environ Sci Technol 51:11701–11709

    Article  CAS  PubMed  Google Scholar 

  50. Zhu R, Wang D, Liu Y, Liu M, Fu S (2022) Bifunctional superwetting carbon nanotubes/cellulose composite membrane for solar desalination and oily seawater purification. Chem Eng J 433

    Article  CAS  Google Scholar 

  51. Kou H, Liu Z, Zhu B, Macharia DK, Ahmed S, Wu B, Zhu M, Liu X, Chen Z (2019) Recyclable CNT-coupled cotton fabrics for low-cost and efficient desalination of seawater under sunlight. Desalination 462:29–38

    Article  CAS  Google Scholar 

  52. Wu C-M, Cheng Y-C, Lai W-Y, Chen P-H, Way T-D (2020) Friction and wear performance of staple carbon fabric-reinforced composites: Effects of surface topography. Polymers 12:141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cheng Y-C, Wu C-M, Lin P-C, Lai W-Y, Chen P-H, Way T-D (2020) Friction behaviors of staple carbon fiber composites. Mod Phys Lett B 34:2040002

    Article  CAS  Google Scholar 

  54. Zhao Q, Wan Y, Chang F, Wang Y, Jiang H, Jiang L, Zhang X, Ma N (2022) Photothermal converting polypyrrole/polyurethane composite foams for effective solar desalination. Desalination 527

    Article  CAS  Google Scholar 

  55. Gokana MR, Wu CM, Reddicherla U, Motora KG (2021) Scalable preparation of ultrathin porous polyurethane membrane-based triboelectric nanogenerator for mechanical energy harvesting. Express Polym Lett 15

  56. Aksoy B, Sel E, Kuyumcu Savan E, Ateş B, Köytepe S (2021) Recent progress and perspectives on polyurethane membranes in the development of gas sensors. Critic Rev Anal Chem 51:619-630

  57. Thakur S, Hu J (2017) Polyurethane: a shape memory polymer (SMP). Aspects Polyurethanes 53-71

  58. Shen C, Zhu Y, **ao X, Xu X, Chen X, Xu G (2020) Economical salt-resistant superhydrophobic photothermal membrane for highly efficient and stable solar desalination. ACS Appl Mater Interf 12:35142–35151

    Article  CAS  Google Scholar 

  59. Zia KM, Bhatti HN, Bhatti IA (2007) Methods for polyurethane and polyurethane composites, recycling and recovery: A review. React Funct Polym 67:675–692

    Article  CAS  Google Scholar 

  60. Lei W, Khan S, Chen L, Suzuki N, Terashima C, Liu K, Fujishima A, Liu M (2021) Hierarchical structures hydrogel evaporator and superhydrophilic water collect device for efficient solar steam evaporation. Nano Res 14:1135–1140

    Article  CAS  Google Scholar 

  61. Wang YZ, L. & Wang, P. (2016) Self floating carbon nano-tube membrane on macroporous silica substrate for highly efficient solar-driven interfacial water evaporation. ACS Sustain. Chem. Eng 4:1223–1230

    CAS  Google Scholar 

  62. Cheng H, Liu X, Zhang L, Hou B, Yu F, Shi Z, Wang X (2019) Self-floating Bi2S3/poly (vinylidene fluoride) composites on polyurethane sponges for efficient solar water purification. Sol Energy Mater Sol Cells 203

    Article  CAS  Google Scholar 

  63. Yu HH, Yan LJ, Shen YC, Chen SY, Li HN, Yang J, Xu ZK (2020) Janus poly (vinylidene fluoride) membranes with penetrative pores for photothermal desalination. Research

  64. Tessema AA, Wu C-M, Motora KG, Naseem S (2021) Highly-efficient and salt-resistant CsxWO3@g-C3N4/PVDF fiber membranes for interfacial water evaporation, desalination, and sewage treatment. Compos Sci Technol 211

    Article  CAS  Google Scholar 

  65. Zhang Y, Tao F, Cao S, Yin K, Chang X, Fan R, Fan C, Dong L, Yin Y, Chen X (2019) Hierarchical K2Mn4O8 nanoflowers: A novel photothermal conversion material for efficient solar vapor generation. Sol Energy Mater Sol Cells 200

    Article  CAS  Google Scholar 

  66. Deng Z, Liu PF, Zhou J, Miao L, Peng Y, Su H, Wang P, Wang X, Cao W, Jiang F (2018) A novel ink-stained paper for solar heavy metal treatment and desalination. Solar Rrl 2:1800073

    Article  Google Scholar 

  67. Guo Z, Wang G, Ming X, Mei T, Wang J, Li J, Qian J, Wang X (2018) PEGylated Self-Growth MoS2 on a Cotton Cloth Substrate for High-Efficiency Solar Energy Utilization. ACS Appl Mater Interf 10:24583–24589

    Article  CAS  Google Scholar 

  68. Wang G, Fu Y, Guo A, Mei T, Wang J, Li J, Wang X (2017) Reduced graphene oxide–polyurethane nanocomposite foam as a reusable photoreceiver for efficient solar steam generation. Chem Mater 29:5629–5635

    Article  CAS  Google Scholar 

  69. Tao F, Zhang Y, Wang B, Zhang F, Chang X, Fan R, Dong L, Yin Y (2018) Graphite powder/semipermeable collodion membrane composite for water evaporation. Sol Energy Mater Sol Cells 180:34–45

    Article  CAS  Google Scholar 

  70. Jia C, Li Y, Yang Z, Chen G, Yao Y, Jiang F, Kuang Y, Pastel G, **e H, Yang B (2017) Rich mesostructures derived from natural woods for solar steam generation. Joule 1:588–599

    Article  Google Scholar 

  71. Ding D, Huang W, Song C, Yan M, Guo C, Liu S (2017) Non-stoichiometric MoO 3–x quantum dots as a light-harvesting material for interfacial water evaporation. Chem Commun 53:6744–6747

    Article  CAS  Google Scholar 

  72. Ye M, Jia J, Wu Z, Qian C, Chen R, O’Brien PG, Sun W, Dong Y, Ozin GA (2017) Synthesis of black TiOx nanoparticles by Mg reduction of TiO2 nanocrystals and their application for solar water evaporation. Adv Energy Mater 7:1601811

    Article  Google Scholar 

  73. Hua Z, Li B, Li L, Yin X, Chen K, Wang W (2017) Designing a novel photothermal material of hierarchical microstructured copper phosphate for solar evaporation enhancement. J Phys Chem C 121:60–69

    Article  CAS  Google Scholar 

  74. Zhou L, Zhuang S, He C, Tan Y, Wang Z, Zhu J (2017) Self-assembled spectrum selective plasmonic absorbers with tunable bandwidth for solar energy conversion. Nano Energy 32:195–200

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to the Ministry of Science and Technology of Taiwan, Republic of China for the financial support of this study under contract number: MOST110-2811-E-011-006-MY3. We would like to acknowledge also Link Win Technology Co., Ltd. (Taichung, Taiwan) for hel** us in preparation of SCF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Mou Wu.

Ethics declarations

Conflicts of interest

The authors declare that there are no financial interest or personal relationship that could affect the work reported in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, CM., Cheng, C.T., Tessema, A.A. et al. Staple carbon fabric/polyurethane Janus membranes for photothermal conversion and interfacial steam generation. J Polym Res 30, 196 (2023). https://doi.org/10.1007/s10965-023-03594-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03594-w

Keywords

Navigation