Log in

On the structural changes, mechanism and kinetics of stabilization of lignin blended polyacrylonitrile copolymer fiber

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Polyacrylonitrile(PAN)/lignin blend fiber prepared by continuous wet spinning process in dimethylsulfoxie(DMSO) was thermally stabilized under oxygen atmosphere in a continuous multizone oven at different heating temperature. The thermal behaviour of PAN/lignin fiber (PL fiber) stabilized were characterized by differential scanning calorimetry(DSC) under nitrogen atmosphere. The cyclization kinetics parameters such as activation energy(Ea), rate constant(k), pre-exponential factor(A) and extent of oxidation reaction (EOR) at different temperature were calculated from Kissinger and Ozawa method. FTIR analysis was used to investigate the structural changes and calculate the cyclization index and dehydrogenation index of stabilized PL fiber. The cyclization index values for the temperature of stabilization from 235 °C to 265 °C varied from 40 to 85%. The variation in density, elemental composition and mechanical properties of PL fiber stabilized at different temperature was determined. The density of the stabilized fiber varied from 1.225 to 1.385 g/cc as the stabilization temperature increased from 235 to 265 °C. The mechanism of thermal stabilization of and a set of temperature profile for a complete stabilization of PL fiber has been deduced from the various characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1
Scheme 2
Fig. 10

Similar content being viewed by others

References

  1. Constant S, Wienk HL, Frissen AE, de Peinder P, Boelens R, Van Es DS, Grisel RJ, Weckhuysen BM, Huijgen WJ, Gosselink RJ, Bruijnincx PC (2016) Green Chem 18:2651

    Article  CAS  Google Scholar 

  2. Watkins D, Nuruddin M, Hosur M, Tcherbi-Narteh A, Jeelani S (2015) J Mater Res Technol 4(1):26–31

    Article  CAS  Google Scholar 

  3. Zhoujian Hu, Xueyu Du, Liu J, Chang H-M, Jameel H (2016) J Wood Chem Tech 36:432–446

    Article  Google Scholar 

  4. Baker DA, Rials TG (2013). J Appl Polym Sci. https://doi.org/10.1002/APP.39273

    Article  Google Scholar 

  5. Fang W, Yang S, Wang X-L, Yuan T-Q, Sun R-C (2017) Green Chem 19:1794

    Article  CAS  Google Scholar 

  6. Sazanov Yu, Krutov S, Ipatova Y, Kosyakov D, Kulikova Ye (2017) Eurasian Chemico-Tech J 19:23–29

    Article  CAS  Google Scholar 

  7. Dong X, Chunxiang Lu, Zhou P, Zhang S, Wang L, Li D (2015) RSC Adv 5:42259

    Article  CAS  Google Scholar 

  8. Bissett PJ, Herriott CW (2012) U.S. Patent 2012/0003471

  9. ** J, Ogale AA (2018). J Appl Polym Sci. https://doi.org/10.1002/APP.45903

    Article  Google Scholar 

  10. Dong X, Lu C, Zhou P, Zhang S, Wang L, Li D (2015) RSC Adv 5:42259

    Article  CAS  Google Scholar 

  11. Liu HC, Chien AT, Newcomb BA, Liu Y, Kumar S (2015) ACS Sustain Chem Eng 3:1943–1954

    Article  CAS  Google Scholar 

  12. Seo DK, Jeun JP, Kim HB, Kang PH (2011) Rev Adv Mater Sci 28:31–34

    CAS  Google Scholar 

  13. Lee S, Kim J, Bon-Cheol Ku, Kim J, Joh H-I (2012) Adv Chem Eng Sci 2:275–282

    Article  CAS  Google Scholar 

  14. Anqi Ju, Hongyao Xu, Guang S (2012) J Mater Res 27(20):2668–2676

    Article  Google Scholar 

  15. Meinl J, Kirsten M, Cherif C, Michaelis A (2016) J Anal Chem 7(3):282–293

    Article  CAS  Google Scholar 

  16. Porkodi P, JK A, Sunil S, Pardhi TK, Shukla HK, Shete SK, Kumar A (2021) J Polym Res 28(54)

  17. Poursorkhabi V, Mohanty AK, Misra M (2016). J Appl Polym Sci. https://doi.org/10.1002/APP.44005

    Article  Google Scholar 

  18. Miki T, Sugimoto H, Kojiro K, Furuta Y, Kanayama K (2012) J Wood Sci 58:300–308

    Article  CAS  Google Scholar 

  19. Akbari S, Haghighat Kish M, Karimi M, Entezami AA (2016) J Tex Polym 4(1):27

    Google Scholar 

  20. Catta Preta I, Sakata S, Garcia G, Zimmermann J, Galembeck F, Giovedi C (2007) J Therm Anal Calorim 87(3):657–659

    Article  CAS  Google Scholar 

  21. Jiang X, Ouyang Q, Liu D, Huang J, Ma H, Chen Y, Wang X, Sun W (2018) Holzforschung, aop. https://doi.org/10.1515/hf-2017-0191

  22. Ouyang Q, Cheng L, Wang H, Li K (2008) Polym Degrad Stab 93:1415–1421

    Article  CAS  Google Scholar 

  23. Mainkaa H, Hilfert L, Busse S, Edelmann F, Haak E, Herrmann AS (2015) J Meter Res Technol 4(4):377–391

    Article  Google Scholar 

  24. Fitzer E, Muller DJ (1975) Carbon 13(1):63–69

    Article  CAS  Google Scholar 

  25. Chen L, Shen Z, Liu J, Lianga J, Wang X (2020) RSC Adv 10:6356

    Article  CAS  Google Scholar 

  26. Fu Z, Gui Y, Cao C, Liu B, Zhou C, Zhang H (2014) J Mater Sci 49:2864–2874

    Article  CAS  Google Scholar 

  27. Al Aiti M, Das A, Kanerva M, Järventausta M, Johansson P, Scheer C, Göbel M, Jehnichen D, Brünig H, Wul L, Boye S, Arnhold K, Kuusipalo J, Heinrich G (2020) Materials 13:3687

    Article  CAS  Google Scholar 

  28. Devasia R, Nair CP, Sivadasan P, Catherine BK, Ninan KN (2003) J Appl Polym Sci 88:915

    Article  CAS  Google Scholar 

  29. Karacan I, Erdogan G (2012) Polym Eng Sci 467–480

  30. Shimada I, Takahagi T (1986) J Polym Sci Part A Polym Chem 24:1989

    Article  CAS  Google Scholar 

  31. Derkacheva O, Sukhov D (2008) Macromol Symp 265:61–68

    Article  CAS  Google Scholar 

  32. Nunna S, Naebe M, Hameed N, Creighton C, Naghashian S, Jennings MJ, Atkiss S, Setty M, Fox BL (2016) Polym Degrad Stab 125:105

    Article  CAS  Google Scholar 

  33. Anqi Ju, Hongyao Xu (2012) J Mater Res 27(20):2668–2676

    Article  Google Scholar 

  34. Foston M, Nunnery GA, Meng X, Sun Q, Baker FS, Ragauskas A (2013) Carbon 52:65–73

    Article  CAS  Google Scholar 

  35. Brodin I, Ernstsson M, Gellerstedt G, Sjoholm E (2012) Holzforschung 66(2):141–147

    Article  CAS  Google Scholar 

  36. Chen JC, Harrison IR (2002) Carbon 40:25–45

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Porkodi.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2568 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porkodi, P., Abhilash, J.K. & Shukla, H.K. On the structural changes, mechanism and kinetics of stabilization of lignin blended polyacrylonitrile copolymer fiber. J Polym Res 29, 436 (2022). https://doi.org/10.1007/s10965-022-03278-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03278-x

Keywords

Navigation