Log in

Fabrication of rechargeable proton battery and PEM fuel cell using biopolymer Gellan gum incorporated with NH4HCO2 solid electrolyte

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Solid electrolyte for electrochemical device applications have been developed using a linear anionic polysaccharide, Gellan gum incorporated with Ammonium formate (NH4HCO2) by the solution casting technique using double distilled water as solvent. The amorphous nature and the crystallinity percentage of the polymer membranes have been calculated from X-ray Diffraction (XRD) technique and the complex formation between the polymer and salt have been studied using Fourier transform infrared (FTIR) technique. Ionic conductivity of developed membranes has been found by measuring its impedance. Polymer membrane (1 g Gellan gum: 0.9 M.wt % of NH4HCO2) exhibits the conductivity of 5.62 ± 0.09 × 10–3 S/cm. The Differential Scanning Calorimetric (DSC) thermograms have been used to study the glass transition temperature in the membranes. The predominant transportation of ions has been proved by DC Wagner’s Polarization technique. The electrochemical stability for the highest ion conducting polymer membrane has been studied using Linear sweep Voltametry (LSV). Using highest conducting polymer membrane as an electrolyte, the electrochemical devices – primary battery, rechargeable battery and proton exchange membrane (PEM) fuel cell have been constructed and their performance has been analyzed. The primary battery exhibited the open circuit voltage (OCV) of 1.78 V, the rechargeable battery provided the highest potential of 2.27 V and the PEM fuel cell exhibits the OCV of 763 mV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Subba Reddy CV, Sharmanad AK, Narasimha Rao VVR (2004) Characterization of a solid state battery based on polyblend of (PVP+PVA+KBr O3) electrolyte. Ionics 10:142–147

    Article  Google Scholar 

  2. Meng C, Liu C, Chen L, Hu C, Fan S (2010) Highly flexible and all-solid-state aer like polymer super capacitors. Nano Lett 10:4025–4403

    Article  CAS  Google Scholar 

  3. Fang J, Qiao J, Wilknson DP, Zhang J (eds) (2015) Electrochemical polymer electrolyte membranes. CRC Press, New York

    Google Scholar 

  4. Hassan M, Azimi N (2019) Conductivity and transport properties of starch/glycerin-MgSO4 solid polymer electrolytes. Int J Adv Appl Sci 6:38–43

    Article  Google Scholar 

  5. Chitra R, Sathya P, Selvasekarapandian S, Monisha S, Moniha V, Meyvel S (2019) Synthesis and characterization of iota-carrageenan solid biopolymer electrolytes for electrochemical applications. Ionics 25:2147–2157

    Article  CAS  Google Scholar 

  6. Naachiyar R, Ragam M, Selvasekarapandian S, Krishna M, Buvaneshwari P (2021) Development of biopolymer electrolyte membrane using Gellan gum biopolymer incorporated with NH4SCN for electro-chemical application. Ionics 27:3415–3429

    Article  CAS  Google Scholar 

  7. Vanitha N, Shanmugapriya C, Subramanian S, Krishna M, Vengadesh N, Karuppasamy, (2022) Investigation of N-S-based graphene quantum dot on sodium alginate with ammonium thiocyanate (NH4SCN) biopolymer electrolyte for the application of electrochemical devices. J Mater Sci Mater Electron 33:1–21

    Article  Google Scholar 

  8. Majid SR, Sabadini RC, Kanicki J, Pawlicka A (2014) Impedance analysis of gellan gum-poly (vinyl pyrrolidone) membranes. Mol Cryst Liq Cryst 604(1):84–95

    Article  CAS  Google Scholar 

  9. Noor IM, Majid SR, Arof AK, Djurado D, Neto SC, Pawlicka A (2012) Characteristics of gellan gum–LiCF3SO3 polymer electrolytes. Solid State Ion 225:649–653

    Article  CAS  Google Scholar 

  10. Noor IM (2020) Determination of charge carrier transport properties of gellan gum–lithium triflate solid polymer electrolyte from vibrational spectroscopy. High Perform Polym 32:168–174

    Article  CAS  Google Scholar 

  11. Neto MJ, Sentanin F, Esperança J, Medeiros MJ, Pawlicka A, Bermudez V, Silva M (2015) Gellan gum—ionic liquid membranes for electrochromic device application. Solid State Ion 274

  12. Rahul S, Bhaskar B, Hee-Woo R, Pramod S (2015) Solid gellan gum polymer electrolyte for energy application. Int J Hydrogen Energy 40:9365–9372

    Article  Google Scholar 

  13. Karthika J, Vishalakshi B, Jagadish N (2015) Gellan gum–graft–polyaniline—an electrical conducting biopolymer. Int J Biol Macromol 82:61–67

    Article  Google Scholar 

  14. Abdul Halim NF, Majid SR, Arof AK, Kajzar F, Pawlicka A (2012) Gellan gum-LiI gel polymer electrolytes. Mol Cryst Liq Cryst 554:232–238

    Article  Google Scholar 

  15. Monisha S, Mathavan T, Selvasekarapandian S, Milton Franklin Benial A, Aristatil G, Mani N, Premalatha M, Vinoth Pandi D (2017) Investigation of bio polymer electrolyte based on cellulose acetate-ammonium nitrate for potential use in electrochemical devices. Carbohydr Polym 157:38–47

    Article  CAS  Google Scholar 

  16. Moniha V, Marimuthu A, Selvasekarapandian S, Sundaresan B, Hemalatha R (2019) Development and characterization of bio-polymer electrolyte iota-carrageenan with ammonium salt for: electrochemical application. Mater Today Proc 8:449–455

    Article  CAS  Google Scholar 

  17. Karthikeyan S, Selvasekarapandian S, Premalatha M, Monisha S, Boopathi S, Aristatil G, Arun A, Saminathan M (2017) Proton-conducting I-Carrageenan-based biopolymer electrolyte for fuel cell application. Ionics 23:2775–2780

    Article  CAS  Google Scholar 

  18. Boopathi G, Pugalendhi S, Selvasekarapandian S, Premalatha M, Monisha S, Aristatil G (2017) Development of proton conducting biopolymer membrane based on agar–agar for fuel cell. Ionics 23:2781–2790

    Article  CAS  Google Scholar 

  19. Selvalakshmi S, Mathavan T, Selvasekarapandian S, Premalatha M (2018) A study of electrochemical devices based on Agar-Agar-NH4I biopolymer electrolytes. AIP Conference Proceedings 140019

  20. Selvalakshmi S, Mathavan T, Selvasekarapandian S et al (2019) Characterization of biodegradable solid polymer electrolyte system based on agar-NH4Br and its comparison with NH4I. J Solid State Electrochem 23:1727–1737

    Article  CAS  Google Scholar 

  21. Premalatha M, Mathavan T, Selvasekarapandian S, Selvalakshmi S, Monisha S (2017) Incorporation of NH4Br in tamarind seed polysaccharide biopolymer and its potential use in electrochemical energy storage devices. Org Electron 50:418–425

    Article  CAS  Google Scholar 

  22. Premalatha M, Mathavan T, Selvasekarapandian S, Selvalakshmi S (2018) Structural and electrical characterization of tamarind seed polysaccharide (TSP) doped with NH4HCO2. AIP Conference Proceedings 070005

  23. Mohamed A, Abd. Shukur M, Kadir M, Yusof Y (2020) Ion conduction in chitosan-starch blend based polymer electrolyte with ammonium thiocyanate as charge provider. J Polym Res 27(6)

  24. Hodge RM, Edward GH, Simon GP (1996) Water absorption and states of water in semicrystalline poly(vinyl alcohol) films. Polymer 37(8):1371–1376

    Article  CAS  Google Scholar 

  25. Vinoth Pandi D, Selvasekarapandian S, Bhuvaneswari R, Premalatha M, Monisha S, Arun Kumar D, Kawamura J (2016) Development and characterization of proton conducting polymer electrolyte based on PVA, amino acid glycine and NH4SCN. Solid State Ion 298:15–22

    Article  Google Scholar 

  26. Premalatha M, Mathavan T, Selvasekarapandian S, Monisha S, Vinoth Pandi D, Selvalakshmi S (2016) Investigations on proton conducting biopolymer membranes based on tamarind seed polysaccharide incorporated with ammonium thiocyanate. J Non-Cryst Solids 453:131–140

    Article  CAS  Google Scholar 

  27. Boukamp BA (1986) A nonlinear least squares fit procedure for analysis of immittance data of electrochemical systems. Solid State Ion 20(1):31–44

    Article  CAS  Google Scholar 

  28. Machado GD, Regiani AM, Pawlicka A (2003) Carboxymethylcellulose derivatives with low hydrophilic properties. Polimery 48(4):273–279

    Article  CAS  Google Scholar 

  29. Mollá S, Compañ V (2011) Polyvinyl alcohol nanofiber reinforced Nafion membranes for fuel cell applications. Energy Fuels 372:191–200

    Google Scholar 

  30. Muthukrishnan M, Shanthi C, Selvasekarapandian S, Shanthi G, Sampathkumar L, Maheshwari T (2021) Impact of ammonium formate (AF) and ethylene carbonate (EC) on the structural, transport and electrochemical properties of pectin based biopolymer membranes. Ionics 27:3443–3459

    Article  CAS  Google Scholar 

  31. Chenliang Gong Yu, Liang ZQ, Li H, Zhongying Wu, Zhang Z, Zhang S, Zhang X, Li Y (2015) Solution processable octa(aminophenyl)silsesquioxane covalently cross-linked sulfonated polyimides for proton exchange membranes. J Membr Sci 476:364–372

    Article  Google Scholar 

  32. Yang T, Li Z, Lyu H, Zheng J, Liu J, Liu F, Zhang Z, Rao H (2018) A graphene oxide polymer brush based cross-linked nanocomposite proton exchange membrane for direct methanol fuel cells. RSC Adv 8(28):15740–15753

    Article  CAS  Google Scholar 

  33. Pasquini L, Zhakisheva B, Sgreccia E, Narducci R, Di Vona ML, Knauth P (2021) Stability of proton exchange membranes in phosphate buffer for enzymatic fuel cell application: Hydration, conductivity and mechanical properties. Polymers (Basel) 13(3):475

    Article  CAS  Google Scholar 

  34. Zhao C, Lin H, Shao K, Li X, Ni H, Wang Z, Na H (2006) Block sulfonated poly(ether ether ketone)s (SPEEK) ionomers with high ion-exchange capacities for proton exchange membranes. J Power Sources 162:003–1009

    Google Scholar 

  35. Pandey K, Lakshmi N, Chandra S (1998) A rechargeable solid state proton battery with an intercalating cathode and an anode containing a hydrogen storage-material. J Power Sources 76(1):116–123

    Article  CAS  Google Scholar 

  36. Tamilarasan K, Selvasekarapandian S, Chitra R, Kiruthika S (2021) Investigation of blend biopolymer electrolytes based on Dextran-PVA with ammonium thiocyanate. J Solid State Electrochem 25:1–11

    Google Scholar 

  37. Hemalatha R, Marimuthu A, Selvasekarapandian S, Sundaresan B, Moniha V (2019) Studies of proton conducting polymer electrolyte based on PVA, amino acid proline and NH4SCN. J Sci Adv Mater Dev 4:101–110

    Google Scholar 

  38. Hemalatha R, Alagar M, Selvasekarapandian S, Sundaresan B, Moniha V, Boopathi G, Christopher S (2019) Preparation and characterization of proton-conducting polymer electrolyte based on PVA, amino acid proline, and NH4Cl and its applications to electrochemical devices. Ionics 25:141–154

    Article  CAS  Google Scholar 

  39. Tang Y, Yuan W, Pan M, Wan Z (2010) Feasibility study of porous copper fiber sintered felt: A novel porous flow field in proton exchange membrane fuel cells. Int J Hydrogen Energy 35:9661–9677

    Article  CAS  Google Scholar 

  40. Moniha V, Alagar M, Selvasekarapandian S, Sundaresan B, Boopathi G (2017) Conductive bio-polymer electrolyte iota-carrageenan with ammonium nitrate for application in electrochemical devices. J Non-Cryst Solids 481:424–434

    Article  Google Scholar 

  41. Moniha V, Alagar M, Selvasekarapandian S, Sundaresan B, Hemalatha R, Boopathi G (2018) Synthesis and characterization of bio-polymer electrolyte based on iota-carrageenan with ammonium thiocyanate and its applications. J Solid State Electrochem 22:1–15

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selvasekarapandian S.

Ethics declarations

Conflict of interest

Authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2703 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

R, M., M, R., S, S. et al. Fabrication of rechargeable proton battery and PEM fuel cell using biopolymer Gellan gum incorporated with NH4HCO2 solid electrolyte. J Polym Res 29, 337 (2022). https://doi.org/10.1007/s10965-022-03190-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03190-4

Keyword

Navigation