Log in

Polysulfone with glycopolymer for development of antifouling ultrafiltration membranes

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Ultrafiltration (UF) composite and blend membranes from poly(2,3,4,6-tetra-O-acetyl-D-glucopyranoside methacrylate) (GP)-grafted MCNTs (GP-graft-CNTs) and GP homopolymer with different weight ratios of PSF and PVP were fabricated for antifouling application. Some portions of each fabricated nanocomposite and blend membranes were chemically treated to deacetylate the pendant acetyl glucopyranoside moieties of macromolecular chains to obtain hydrophilic pendant D-glucopyranoside units of macromolecular chain grafts of MCNTs and GP homopolymer in UF membranes. Fouling features of the membranes at 2 bar functioning pressure were evaluated by permeating BSA solutions and oil–water emulsion. The tri-polymer blend UF membranes exhibited 96% BSA rejection (GP3-T membrane) and 93% oil rejection (GP1 membrane) whereas composite membranes showed 89% BSA (g-GPC2) and 83% oil (g-GPC3) rejections from their respective feeds. The deacetylated nanocomposite membrane, g-GPC1-T (GP-graft-CNTs/PSF/PVP at 0.33/86.67/13 weight ratio) exhibited superior flux for BSA solution (135 LMH) than the fabricated membranes (nanocomposite membranes: 88–132 LMH; GP/PSF/PVP = 46–88 LMH) at 2 bar operating pressure. Composite membranes exhibited flux for oil–water feeds even after 8 h whereas the blend membranes showed no flux after 1 h. The modified nanocomposite membrane for oil–water emulsion feeds, g-GPC1 exhibited a maximum 230 LMH flux having oil rejection of 75%. Treated composite membranes demonstrated a higher flux recovery ratio (FRR = 87–94%) than the untreated nanocomposite membranes (FRR = 17–37%) and blend membranes of GP/PSF/PVP (FRR = 51–81% for as-cast membranes and FRR = 13–22% for treated membranes) for oil–water emulsion feeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Montgomery MA, Elimelech M (2007) Water and sanitation in develo** countries: Including health in the equation. Envron Sci Technol 41:17–24. https://doi.org/10.1021/es072435t

    Article  Google Scholar 

  2. Kajitvichyanukul P, Hung YT, Wang LK (2011) Membrane and desalination technologies, Wang LK, Chen JP, Hung YT, Shammas NK (Eds.), Handbook of Environmental Engineering, vol. 13, The Humana Press Inc., New York.

  3. Zeman LJ, Zydney AL (1996) Microfiltration and ultrafiltration: Principles and applications. Marcek Dekker Inc., New York

    Google Scholar 

  4. Rana D, Matsuura T (2010) Surface modifications for antifouling membranes. Chem Rev 110:2448–2471. https://doi.org/10.1021/cr800208y

    Article  CAS  PubMed  Google Scholar 

  5. Sainath AVS, Reddy AVR (2013) Modification of polysulfone with pendant carboxylic acid functionality for ultrafiltration membrane applications. Bull Mater Sci 36:271–276. https://doi.org/10.1007/s12034-013-0447-2

    Article  CAS  Google Scholar 

  6. Bradley RS, Vuille M, Diaz HF, Vergara W (2006) Threats to water supplies in the tropical Andes. Science 312:1755–1756. https://doi.org/10.1126/science.1128087

    Article  CAS  PubMed  Google Scholar 

  7. Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marinas BJ, Mayes AM (2008) Science and technology for water purification in the coming decades. Nature 452:301–310. https://doi.org/10.1038/nature06599

    Article  CAS  PubMed  Google Scholar 

  8. Pendergast MM, Hoek EM (2011) A review of water treatment membrane nanotechnologies. Energy Environ Sci 4:1946–1971. https://doi.org/10.1039/C0EE00541J

    Article  CAS  Google Scholar 

  9. Elimelech M, Phillip WA (2011) The future of seawater desalination: Energy, technology and the environment. Science 333:712–717. https://doi.org/10.1126/science.1200488

    Article  CAS  PubMed  Google Scholar 

  10. Arunkumar A, Etzel MR (2015) Negatively charged tangential flow ultrafiltration membranes for whey protein concentration. J Membr Sci 475:340–348. https://doi.org/10.1016/j.memsci.2014.10.049

    Article  CAS  Google Scholar 

  11. Liu TY, Zhang RX, Li Q, Van der Bruggen B, Wang XL (2014) Fabrication of a novel dual-layer (PES/PVDF) hollow fiber ultrafiltration membrane for wastewater treatment. J Membr Sci 472:119–132. https://doi.org/10.1016/j.memsci.2014.08.028

    Article  CAS  Google Scholar 

  12. Maruf SH, Greenberg AR, Pellegrino J, Ding Y (2014) Influence of substrate processing and interfacial polymerization conditions on the surface topography and permselective properties of surface-patterned thin-film composite membranes. J Membr Sci 471:65–71. https://doi.org/10.1016/j.memsci.2016.04.003

    Article  CAS  Google Scholar 

  13. Feins M, Sirkar KK (2004) Highly selective membranes in protein ultrafiltration. Biotechnol Bioeng 86:603–611. https://doi.org/10.1002/bit.20069

    Article  CAS  PubMed  Google Scholar 

  14. Santosh V, Babu PV, Gopinath J, Rao NNM, Sainath AVS, Reddy AVR (2020) Development of hydroxyl and carboxylic acid functionalized CNTs–polysulphone nanocomposite fouling-resistant ultrafiltration membranes for oil–water separation. Bull Mater Sci 43:125. Bull Mater Sci (2020) 43:125 https://doi.org/10.1007/s12034-020-2079-7

  15. Ganj M, Asadollahi M, Mousavi SA, Bastani D, Aghaeifard F (2019) Surface modification of polysulfone ultrafiltration membranes by free radical graft polymerization of acrylic acid using response surface methodology. J Polym Res 26:231. https://doi.org/10.1007/s10965-019-1832-3

    Article  CAS  Google Scholar 

  16. Ge Q, Ding L, Wu T, Xu G, Yang F, **ang M (2017) Effect of Surfactant on morphology and pore size of polysulfone membrane. J Polym Res 25:21. https://doi.org/10.1007/s10965-017-1410-5

    Article  CAS  Google Scholar 

  17. Jaleh B, Zare E, Saeid Azizian S, Qanati O, Nasrollahzadeh M, Varma RS (2020) Preparation and characterization of polyvinylpyrrolidone/polysulfone ultrafltration membrane modifed by graphene oxide and titanium dioxide for enhancing hydrophilicity and antifouling properties. J Inorg Organomet Polym Mater 30:2213–2223. https://doi.org/10.1007/s10904-019-01367-x

    Article  CAS  Google Scholar 

  18. Zhang DL, Zha JW, Li CQ, Li WK, Li JX (2017) Functionalization of multi-walled carbon nanotubes by radiation-induced graft polymerization in aqueous solution. Fuller Nanotub Car N 25:250–255. https://doi.org/10.1080/1536383X.2017.1283617

    Article  CAS  Google Scholar 

  19. Zhang Q, Lei M, Huang S, Fu H, Yan G, Li L, Yan H (2017) Preparation, characterization, and properties of disulfide-containing polyethyleneimine grafted carbon nanotubes. Fuller Nanotub Car N 25:386–390. https://doi.org/10.1080/1536383X.2017.1320546

    Article  CAS  Google Scholar 

  20. Kim SW, Kim T, Kim YS, Choi HS, Lim HJ, Yang SJ, Park CR (2012) Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers. Carbon 50:3–33. https://doi.org/10.1016/j.carbon.2011.08.011

    Article  CAS  Google Scholar 

  21. (a) Qu L, Veca LM, Lin Y, Kitaygorodskiy A, Chen B, McCall AM, Sun YP (2005) Soluble nylon-functionalized carbon nanotubes from anionic ring-opening polymerization from nanotube surface. Macromolecules 38:10328–10331. https://doi.org/10.1021/ma051762n. (b) Buffa F, Hu H, Resasco DE (2005) Side-wall functionalization of single-walled carbon nanotubes with 4-hydroxymethylaniline followed by polymerization of caprolactone. Macromolecules 38:8258–8263. https://doi.org/10.1021/ma050876w. (c) Gao J, Itkis ME, Yu A, Bekyarova E, Zhao B, Haddon RC (2005) Continuous spinning of a single-walled carbon nanotube-nylon composite fiber. J Am Chem Soc 127:3847–3854. https://doi.org/10.1021/ja0446193

    Article  CAS  Google Scholar 

  22. Kong H, Gao C, Yan D (2004) Constructing amphiphilic polymer brushes on the convex surfaces of multi-walled carbon nanotubes by in situ atom transfer radical polymerization. J Mater Chem 14:1401–1405. https://doi.org/10.1039/B401180E

    Article  CAS  Google Scholar 

  23. Zeng HL, Gao C, Yan DY (2006) Poly(ε-caprolactone)-functionalized carbon nanotubes and their biodegradation properties. Adv Funct Mater 16:812–818. https://doi.org/10.1002/adfm.200500607

    Article  CAS  Google Scholar 

  24. Gu J, **ao P, Chen J, Zhang J, Huang Y, Chen T (2014) Janus polymer/carbon nanotube hybrid membranes for oil/water separation. ACS Appl Mater Interfaces 6:16204–16209. https://doi.org/10.1021/am504326m

    Article  CAS  PubMed  Google Scholar 

  25. Zhu Y, Wang D, Jiang L, ** J (2014) Recent progress in develo** advanced membranes for emulsified oil/water separation. NPG Asia Mater 6:1–11. https://doi.org/10.1038/am.2014.23

    Article  CAS  Google Scholar 

  26. Abed MRM, Kumbharkar SC, Groth AM, Li K (2012) Ultrafiltration PVDF hollow fibre membranes with interconnected bicontinuous structures produced via a single-step phase inversion technique. J Membr Sci 407–408:145–154. https://doi.org/10.1016/j.memsci.2012.03.029

    Article  CAS  Google Scholar 

  27. Liu F, Abed MRM, Li K (2011) Preparation and characterization of poly(vinylidene fluoride) (PVDF) based ultrafiltration membranes using nano γ-Al2O3. J Membr Sci 366:97–103. https://doi.org/10.1016/j.memsci.2010.09.04

    Article  CAS  Google Scholar 

  28. Huang ZQ, Zheng F, Zhang Z, Xu HT, Zhou KM (2012) The performance of the PVDF-Fe3O4 ultrafiltration membrane and the effect of a parallel magnetic field used during the membrane formation. Desalination 292:64–72. https://doi.org/10.1016/j.desal.2012.02.010

    Article  CAS  Google Scholar 

  29. Vatanpour V, Madaeni SS, Moradian R, Zinadini S, Astinchap B (2011) Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposite. J Membr Sci 375:284–294. https://doi.org/10.1016/j.memsci.2011.03.055

    Article  CAS  Google Scholar 

  30. Daramola MO, Hlanyane P, Sadare OO, Oluwasina OO, Iyuke SE (2017) Performance of carbon nanotube/polysulfone (CNT/PSF) composite membranes during oil–water mixture separation: Effect of CNT dispersion method. Membranes 7:14. https://doi.org/10.3390/membranes7010014

    Article  CAS  PubMed Central  Google Scholar 

  31. Nunes SP, Car A (2013) From charge-mosaic to micelle self-assembly: Block copolymer membranes in the last 40 years. Ind Eng Chem Res 52:993–1003. https://doi.org/10.1021/ie202870y

    Article  CAS  Google Scholar 

  32. Santosh V, Gopinath J, Babu VP, Sainath AVS, Reddy AVR (2018) Acetyl-D-glucopyranoside functionalized carbon nanotubes for the development of high performance ultrafiltration membranes. Sep Purif Technol 191:134–143. https://doi.org/10.1016/j.seppur.2017.09.018

    Article  CAS  Google Scholar 

  33. Sianipar M, Kim SH, Khoiruddin IF, Wenten IG (2017) Functionalized carbon nanotube (CNT) membrane: Progress and challenges. RSC Adv 7:51175–51198. https://doi.org/10.1039/c7ra08570b

    Article  CAS  Google Scholar 

  34. Rana D, Matsuura T, Narbaitz RM, Feng C (2005) Development and characterization of novel hydrophilic surface modifying macromolecule for polymeric membranes. J Membr Sci 249:103–112. https://doi.org/10.1016/j.memsci.2004.09.034

    Article  CAS  Google Scholar 

  35. Rana D, Matsuura T, Narbaitz RM (2006) Novel hydrophilic surface modifying macromolecules for polymeric membranes: Polyurethane ends capped by hydroxy group. J Membr Sci 282:205–216. https://doi.org/10.1016/j.memsci.2006.05.024

    Article  CAS  Google Scholar 

  36. Kim Y, Rana D, Matsuura T, Chung W-J (2009) Influence of surface modifying macromolecules on the surface properties of poly(ether sulfone) ultra-filtration membranes. J Membr Sci 338:84–91. https://doi.org/10.1016/j.memsci.2009.04.017

    Article  CAS  Google Scholar 

  37. Kim Y, Rana D, Matsuura T, Chung W-J, Khulbe KC (2010) Relationship between surface structure and separation performance of poly(ether sulfone) ultra-filtration membranes blended with surface modifying macromolecules. Sep Purif Technol 72:123–132. https://doi.org/10.1016/j.seppur.2010.01.006

    Article  CAS  Google Scholar 

  38. Chen Y, Deng Q, **ao J, Nie H, Wu L, Zhou W, Huang B (2007) Controlled grafting from poly(vinylidene fluoride) microfiltration membranes via reverse atom transfer radical polymerization and antifouling properties. Polymer 48:7604–7613. https://doi.org/10.1016/j.polymer.2007.10.043

    Article  CAS  Google Scholar 

  39. Du JR, Peldszus S, Huck PM, Feng X (2009) Modification of poly(vinylidene fluoride) ultrafiltration membranes with poly(vinyl alcohol) for fouling control in drinking water treatment. Water Res 43:4559–4568. https://doi.org/10.1016/j.watres.2009.08.008

    Article  CAS  PubMed  Google Scholar 

  40. Yang XX, Deng B, Liu ZY, Shi LQ, Bian XK, Yu M, Li LF, Li JY, Lu XF (2010) Microfiltration membranes prepared from acrylamide grafted poly(vinylidene fluoride) powder and their pH sensitive behaviour. J Membr Sci 362:298–305. https://doi.org/10.1016/j.memsci.2010.06.057

    Article  CAS  Google Scholar 

  41. Ren L, Zhang J, Hardy CG, Doxie D, Fleming B, Tang C (2012) Preparation of cobaltocenium-labeled polymers by atom transfer radical polymerization. Macromolecules 45:2267–2275. https://doi.org/10.1021/ma202725c

    Article  CAS  Google Scholar 

  42. Kuila BK, Park K, Dai L (2010) Soluble P3HT-grafted carbon nanotubes: Synthesis and photovoltaic application. Macromolecules 43:6699–6705. https://doi.org/10.1021/ma100917p

    Article  CAS  Google Scholar 

  43. Trinadh M, Kannan G, Rajasekhar T, Sainath AVS, Dhayal M (2014) Synthesis of glycopolymers at various pendant spacer lengths of glucose moiety and their effects on adhesion, viability and proliferation of osteoblast cells. RSC Adv 4:37400–37410. https://doi.org/10.1039/C4RA05436A

    Article  CAS  Google Scholar 

  44. Trinadh M, Govindaraj K, Rajasekhar T, Dhayal M, Sainath AVS (2015) Synthesis and characterization of poly(ethylene oxide)-based glycopolymers and their biocompatibility with osteoblast cells. Polym Int 64:795–803. https://doi.org/10.1002/pi.4854

    Article  CAS  Google Scholar 

  45. Kong H, Gao C, Yan D (2004) Controlled functionalization of multiwalled carbon nanotubes by in situ atom sransfer radical polymerization. J Am Chem Soc 126:412–413. https://doi.org/10.1021/ja0380493

    Article  CAS  PubMed  Google Scholar 

  46. Choi JH, Jegal J, Kim WN (2006) Fabrication and characterization of multi-walled carbon nanotubes/polymer blend membranes. J Membr Sci 284:406–415. https://doi.org/10.1016/j.memsci.2006.08.013

    Article  CAS  Google Scholar 

  47. Tamura M, Uragami T, Sugihara M (1981) Studies on syntheses and permeabilities of special polymer membranes: 30. Ultrafiltration and dialysis characteristics of cellulose nitrate-poly(vinyl pyrrolidone) polymer blend membranes. Polymer 22:829–835. https://doi.org/10.1016/0032-3861(81)90024-0

    Article  CAS  Google Scholar 

  48. Alia NA, Sofiah H, Asmadi A, Endut A (2011) Preparation and characterization of a polysulfone ultrafiltration membrane for bovine serum albumin separation: Effect of polymer concentration. Desalin Water Treat 32:248–255. https://doi.org/10.5004/dwt.2011.2707

    Article  CAS  Google Scholar 

  49. Zulkali MMD, Ahmad AL, Derek CJC (2005) Membrane application in proteomic studies: Preliminary studies on the effect of pH, ionic strength and pressure on protein fractionation. Desalination 179:381–390. https://doi.org/10.1016/j.desal.2004.11.084

    Article  CAS  Google Scholar 

  50. Kumar S, Nandi BK, Guria C, Mandal A (2017) Oil removal from produced water by ultrafiltration using polysulfone membrane. Braz J Chem Eng 34:583–596. https://doi.org/10.1590/0104-6632.20170342s20150500

    Article  CAS  Google Scholar 

  51. Koĺtuniewicz AB, Field RW (1996) Process factors during removal of oil-in-water emulsions with cross-flow microfiltration. Desalination 105:79–89. https://doi.org/10.1016/0011-9164(96)00061-6

    Article  Google Scholar 

  52. Pasparakis G, Alexander C (2008) Sweet talking double hydrophilic block copolymer vesicles. Angew Chem Int Ed 47:4847–4850. https://doi.org/10.1002/anie.200801098

    Article  CAS  Google Scholar 

  53. Urkiaga A, Iturbe D, Etxebarria J (2015) Effect of different additives on the fabrication of hydrophilic polysulfone ultrafiltration membranes. Desalin Water Treat 56:3415–3426. https://doi.org/10.1080/19443994.2014.1000976

    Article  CAS  Google Scholar 

  54. Kim KJ, Fane AG, Aim RB, Liu MG, Jonsson G, Tessaro IC, Bargeman D (1994) A comparative study of techniques used for porous membrane characterization: Pore characterization. J Membr Sci 87:35–46. https://doi.org/10.1016/0376-7388(93)E0044-E

    Article  CAS  Google Scholar 

  55. Maphutha S, Moothi K, Meyyappan M, Iyuke SE (2013) A carbon nanotube-infused polysulfone membrane with polyvinyl alcohol layer for treating oil-containing waste water. Sci Rep 3:1509. https://doi.org/10.1038/srep01509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Celik E, Liu L, Choi H (2011) Protein fouling behavior of carbon nanotube/polyethersulfone composite membranes during water filtration. Water Res 45:5287–5294. https://doi.org/10.1016/j.watres.2011.07.036

    Article  CAS  PubMed  Google Scholar 

  57. Lu D, Zhang T, Ma, (2015) Ceramic membrane fouling during ultrafiltration of oil/water emulsions: Roles played by stabilization surfactants of oil droplets. J Environ Sci Technol 49:4235–4244. https://doi.org/10.1021/es505572y

    Article  CAS  Google Scholar 

Download references

Acknowledgements

VS and KKP are grateful to the CSIR and UGC, India, respectively for providing fellowships. AVSS is grateful for the CSIR network project, MATES-CSC-0104 grant. Manuscript communication number: IICT/Pubs./2020/313.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annadanam V. Sesha Sainath.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 11581 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santosh, V., Palodkar, K.K., Veerababu, P. et al. Polysulfone with glycopolymer for development of antifouling ultrafiltration membranes. J Polym Res 28, 240 (2021). https://doi.org/10.1007/s10965-021-02583-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02583-1

Keyword

Navigation