Log in

Synthesis and characterization of GO doped bio-resource based composites for NLO and multifaceted applications

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The objective of the present work is to synthesize three different types of cardanol based benzoxazines such as cardanol-{1,4-bis(4-aminophenoxy)ethane}benzoxazine (CBAE2Bz), cardanol-{1,4-bis(4-aminophenoxy)butane} benzoxazine (CBAE4Bz) and cardanol-{1,4-bis(4-aminophenoxy)octane}benzoxazine (CBAE8Bz) by varying aliphatic ether link chain length through solventless method. The benzoxazines obtained with varying chain length were converted in to three different types of composites using paraphenylenediamine (PPDA) functionalized gaphene oxide (f-GO) as nano-reinforcement with varying weight percentage and were characterized by different analytical techniques. The molecular structure of the monomers was confirmed from Fourier transform infrared (FTIR) spectroscopy, 1HNMR, 13C NMR and MALDI mass. Data obtained from thermal studies infer that the prepared composites possess good thermal stability and enhanced values of Tg with respect to weight percent of functionalized graphene oxide content. However, the values of thermal stability, Tg, dielectric constant and dielectric loss were marginally decreased with respect to increase in length of the spacer aliphatic chain. The SEM and TEM studies confirm the homogeneous dispersion and single layer thickness of graphene sheet, respectively. The feasibility of usage of f-GO/PCAE2Bz composite in both gram positive bacteria (Bacillus subtilis, Staphylococcus aureus) and gram negative bacteria (Pseudomonas aeruginosa, Escherichia coli) environments were checked and the results obtained were discussed. Further, third-order NLO properties of open and closed aperture Z–scan results conclude that GO doped bio-resource based composites exhibit saturable absorption and self-defocusing type optical non-linearity. The third-order NLO susceptibility (χ3) of GO doped bio-resource based composites are increased with respect to quantity of reinforcement of GO to bio-based polymer. The maximum value of 1.03X 10−4 esu was observed and this nonlinearity is thermal in nature. Thus, the prepared composites may find wide range of applications in diverse surrounding conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Mujahid M, Srivastava DS, Avasthi DK (2011) Dielectric constant and loss factor measurement of polycarbonate, Makrofol KG using swift heavy ion O5+. Radiat Phys Chem 80:582–586

    CAS  Google Scholar 

  2. Han C, Gu A, Liang G, Yuan L (2010) Carbon nanotubes/cyanate ester composites with low percolation threshold, high dielectric constant and outstanding thermal property. Compos A: Appl Sci Manuf 41:1321–1328

    Google Scholar 

  3. Wang YH, Chang CM, Liu YL (2012) Benzoxazine-functionalized multi-walled carbon nanotubes for preparation of electrically-conductive polybenzoxazines. Polymer 53:106–112

    CAS  Google Scholar 

  4. Ishida H, Rodriguez Y (1995) Curing kinetics of a new benzoxine based phenolic resins by differential scanning calorimetr. Polymer 36:3151–3158

    CAS  Google Scholar 

  5. Yagci Y, Kiskan B, Ghosh NN (2009) Recent advancement on Polybenzoxazine—a newly developed high performance thermoset. J Polym Sci A Polym Chem 47:5565–5576

    CAS  Google Scholar 

  6. Reghunadhan Nair CP (2004) Advances in addition-cure phenolic resins. Prog Polym Sci 29:401–498

    Google Scholar 

  7. Ghosh NN, Kiskan B, Yagci Y (2007) Polybenzoxazines—new high performance thermosetting resins: synthesis and properties. Prog Polym Sci 32:1344–1391

    CAS  Google Scholar 

  8. Xu GM, Shi T, Liu JH, Wang Q (2014) Preparation of a liquid benzoxazine based on cardanol and the thermal stability of its graphene oxide composites. J Appl Polym Sci 131:40353–40360

    Google Scholar 

  9. Rao BS, Aruna P (2012) A new thermo set system based on cardanol benzoxazine and hydroxyl benzoxazoline with lower cure temperature. Prog Org Coat 74:427–434

    CAS  Google Scholar 

  10. Chernykh A, Agag T, Ishida H (2009) Synthesis of linear polymers containing benzoxazine moieties in the main chain with high molecular design versatility via click reaction. Polymer 50:382–390

    CAS  Google Scholar 

  11. Liu Y, Zhao S, Zhang H, Wang M, Run M (2012) Synthesis, polymerization, and thermal properties of benzoxazine based on p-aminobenzonitrile. Thermochim Acta 549:42–48

    CAS  Google Scholar 

  12. Andronescu C, Garea CS, Deleanu C, Iovu H (2012) Characterization and curing kinetics of new benzoxazine monomer based on aromatic diamines. Thermochim Acta 530:42–51

    CAS  Google Scholar 

  13. Godovsky DY (2000) Device applications of polymer-nanocomposites. Adv Polym Sci 153:163–205

    CAS  Google Scholar 

  14. Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R 28:1–63

    Google Scholar 

  15. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641

    CAS  Google Scholar 

  16. Kuila T, Srivastava SK, Bhowmick AK, Saxena AK (2008) Thermoplastic polyolefin based polymer-blend-layered double hydroxide nanocomposites. Compos Sci Technol 68:3234–3239

    CAS  Google Scholar 

  17. Zornoza B, Irusta S, Tellez C, Coronas J (2009) Mesoporous silica sphere-polysulfone mixed matrix membranes for gas separation. Langmuir 25:5903–5909

    CAS  PubMed  Google Scholar 

  18. Uddin F (2008) Clays, Nanoclays, and montmorillonite minerals. Metall Mater Trans A 39:2804–2814

    Google Scholar 

  19. Renukappa NM, Siddaramaiah H, Sudhaker Samuel RD, Sundara Rajan J, Lee JH (2009) Dielectric properties of carbon black: SBR composites. J Mater Sci Mater Electron 20:648–656

    CAS  Google Scholar 

  20. Hong CE, Prashantha K, Advani SG, Lee JH (2007) Effects of oxidative conditions on properties of multi-wall carbon nanotubes of polymer nanocomposites. Compos Sci Technol 67:1027–1034

    CAS  Google Scholar 

  21. Khanna V, Bakshi BR (2009) Carbon nanofiber polymer composites: evaluation of life cycle energy use. Environ Sci Technol 43:2078–2084

    CAS  PubMed  Google Scholar 

  22. Jayaraman T, Murthy A, Elakkiya V, Chandrasekaran S, Nithyadharseni P, Khan Z, Senthil R, Shanker R, Raghavender M, Kuppusami P, Jagannathan M, Ashokkumar M (2018) Recent development on carbon based heterostructures for their applications in energy and environment: a review. J Ind Eng Chem 64:16–59

    CAS  Google Scholar 

  23. Liu N, Luo F, Wu H, Liu Y, Zhang C, Chen J (2008) One step ionic-liquidassisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphene. Adv Funct Mater 18:1518–1525

    CAS  Google Scholar 

  24. Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515–6530

    CAS  Google Scholar 

  25. Zhao X, Zhang Q, Chen D (2010) Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules 43:2357–2363

    CAS  Google Scholar 

  26. Yang K, Li Y, Tan X, Peng R, Liu Z (2013) Behavior and toxicity of graphene and its functionalized derivativesin biological systems. Small 9:1492–1503

    CAS  PubMed  Google Scholar 

  27. Selvaraj V, Jayanthi KP, Alagar M (2017) Synthesis and characterization of cardanol based fluorescent composite for optoelectronic and antimicrobial applications. Polymer 108:449–461

    Google Scholar 

  28. Geethakrishnan T, Palanisamy PK (2007) Z-scan determination of the third-order optical nonlinearity of a triphenylmethane dye using 633 nm He–Ne laser. Opt Commun 270:424–428

    CAS  Google Scholar 

  29. Jeyaram S, Geethakrishnan T (2017) Third-order nonlinear optical properties of acid green 25 dye by Z─scan method. Opt Laser Technol 89:179–185

    CAS  Google Scholar 

  30. Sahraoui B, Luc J, Meghea A, Czaplicki R, Fillaut JL, Migalska-Zalas A (2009) Nonlinear optics and surface relief gratings in alkynyl–ruthenium complexes. J Opt A Pure Appl Opt 11:024005E

    Google Scholar 

  31. Bredas JL, Adant C, Tackx P, Persoons A (1994) Third-order nonlinear optical response in organic materials: theoretical and experimental aspects. Chem Rev 94:243–278

    CAS  Google Scholar 

  32. Papagiannouli I, Iliopoulosc K, Gindre D, Sahraoui B, Krupka O, Smokal V, Kolendo A, Couris S (2012) Third-order nonlinear optical response of push–pull azobenzene polymers. Chem Phys Lett 554:107–112

    CAS  Google Scholar 

  33. John Kiran A, Sathessh Raj N, Udhayakumar D, Chandrasekharan K, Kalluraya B, Philip R, Shashikala HD, Adhikari AV (2008) Nonlinear optical properties of p-(N,N-dimethylamino)dibenzylideneacetone doped polymer. Mater Res Bull 43:707–713

    Google Scholar 

  34. Zongo S, Sanusi K, Britton J, Muthunzi P, Nyokong T, Maaza M, Sahraoui B (2015) Nonlinear optical properties of natural laccaic acid dye studied using Z-scan technique. Opt Mater 46:270–275

    CAS  Google Scholar 

  35. Divya M, Malliga P, Sagayaraj P, Joseph Arul Pragasam A (2019) Optical based electrical properties of thiourea borate NLO crystal for electro-optic Q switches. J Electron Mater 48:5632–5639

    CAS  Google Scholar 

  36. Wang F, Wang G, Due HL, Li C (2008) Poly(aniline-co-o-anisidine)/sulfonated carbon nanotubes composites prepared by surface adsorption method. J Macromol Sci A 47:743–753

    CAS  Google Scholar 

  37. Borole DD, Kapadi UR, Mahulikar PP, Hundiwale DG (2006) Conducting polymers: an emerging field of biosensors. Des Monomers Polym 9:1–11

    CAS  Google Scholar 

  38. Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: A review of graphene. Chem Rev 110:132–145

    CAS  PubMed  Google Scholar 

  39. Li L, Zhang BQ, Chen XM (2013) Dielectric characteristics of polyvinylidene fluoride-polyaniline percolative composites up to microwave frequencies. Appl Phys Lett 103:192902

    Google Scholar 

  40. Olad A, Hagh HBK (2019) Graphene oxide and amin-modified graphene oxide incorporated chitosan-gelatin scaffolds as promising materials for tissue engineering. Compos Part B 162:692–702

    CAS  Google Scholar 

  41. García-Argumánez A, Llorente I, Caballero-Calero O, González Z, Menéndez R, Escudero ML, García-Alonso MC (2019) Electrochemical reduction of graphene oxide on biomedical grade CoCr alloy. Appl Surf Sci 465:1028–1036

    Google Scholar 

  42. Chen Y, Zhang X, Yu P, Ma Y (2009) Stable dispersions of graphene and highly conducting graphene films: A new approach to creating colloids of graphene monolayers. Chem Commun 45:4527–4529

    Google Scholar 

  43. Chen YP, He XY, Dayo A, Wang JY, Liu WB, Wang J, Tang T (2019) Synthesis and characterization of cardanol containing tetra-functional fluorene-based benzoxazine resin having two different oxazine ring structures. Polymer 179:121620–121626

    CAS  Google Scholar 

  44. Park S, Dikin D, Nguyen ST, Ruoff RS (2009) Graphene oxide sheets chemically cross-linked by polyallylamine. J Phys Chem C 113:15801–15804

    CAS  Google Scholar 

  45. Selvaraj V, Jayanthi KP, Lakshmikandhan T, Alagar M (2015) Development of polybenzoxazine/TSBA-15 composite from renewable resource cardanol for low k applications. RSC Adv 5:48898–48907

    CAS  Google Scholar 

  46. Zeng M, Wang J, Li R, Liu JX, Chen W, Xu Q, Gu Y (2013) The curing behavior and thermal property of graphene oxide/benzoxazine nanocomposites. Polymer 54:3107–3116

    CAS  Google Scholar 

  47. Suresh Kumar SM, Subramanian K (2016) Enhancement in Mechanical, Thermal, and DielectricProperties of Functionalized Graphene Oxide Reinforced Epoxy Composites. Adv Polym Technol 37:612–621

    Google Scholar 

  48. Bourlinos AB, Gournis D, Petridis D, Szabo T, Szeri A, Dekany I (2003) Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir 19:6050–6055

    CAS  Google Scholar 

  49. Cano-Castillo U, Rejon L (2001) AC and DC measurements of silica-carbon-reinforced polymeric current collector plate. J New Mater Electrochem Syst 4:37–40

    CAS  Google Scholar 

  50. Pan S, Aksay IA (2011) Factors controlling the size of graphene oxide sheets produced via the graphite oxide route. ACS Nano 5:4073–4083

    CAS  PubMed  Google Scholar 

  51. Zheng Y, Zhang A, Chen O, Zhang J, Ning R (2006) Functionalized effect on carbon nanotube/epoxy nano-composites. Mater Sci Eng A 435–436:145–149

    Google Scholar 

  52. Ramesh P, Bhagyalakshmi S, Sampath S (2004) Preparation and physicochemical and electrochemical characterization of exfoliated graphite oxide. J Colloid Interface Sci 274:95–102

    CAS  PubMed  Google Scholar 

  53. Sheik-Bahae M, Said AA, Van Stryland EW (1989) High-sensitivity, single-beam n2 measurements. Opt Lett 14:955–957

    CAS  PubMed  Google Scholar 

  54. Sheik-Bahae M, Said AA, Wei T, Hagan DJ, Van Stryland EW (1990) Sensitive measurement of optical nonlinearities using a single beam. IEEE J Quantum Electron 26:760–769

    CAS  Google Scholar 

  55. Christodoulides DN, Khoo IC, Salamo GJ, Stegeman GI, Van Stryland EW (2010) Nonlinear refraction and absorption: mechanisms and magnitudes. Adv Opt Photon 2:60–200

    CAS  Google Scholar 

  56. Coropceanu V, Cornil J, Da DA, Filho S, Olivier Y, Silbey R, das Bre J-L (2007) Charge transport in organic semiconductors. Chem Rev 107:926–952

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Selvaraj.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 2095 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvaraj, V., Jayanthi, K.P., Arunkumar, K. et al. Synthesis and characterization of GO doped bio-resource based composites for NLO and multifaceted applications. J Polym Res 27, 71 (2020). https://doi.org/10.1007/s10965-020-2037-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-2037-5

Keywords

Navigation