Log in

Polyamide 6/reduced graphene oxide nano-composites prepared via reactive melt processing: formation of crystalline/network structure and electrically conductive properties

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this work, polyamide 6 (PA6)/reduced graphene oxide (RGO)- toluene-2,4-diisocyanate (TDI) composites were fabricated by reactive melt processing, and effect of formation of crystalline/network structure on electrically conductive properties of the composites was studied. The molecular bridge effect of exfoliated RGO-TDI resulted in the homogeneous dispersion of RGO in PA6 matrix. Crystallization analysis shows that RGO facilitated the crystallization of PA6 matrix mainly via accelerating the generation of crystal nucleus, reaching maximum of Xc and minimum of crystal grain size upon RGO level of 1.66 vol.%, which confirmed the formation of most perfect crystalline structure. According to the dynamic rheological analysis, both frequency-independence of G’ and sharply reduce phase angle at low-frequency region with RGO loading level of 1.66 vol.% indicate the transition from liquid-like to solid-like rheological behavior, where terminal to non-terminal transition as well as Cole-Cole arc and rapidly increasing entanglement density confirm the formation of percolation network structure with RGO as a crosslinking center. Corresponding to the analysis above, the electrical conductivity of the nano-composites increased rapidly to the equilibrium value, resulting from the formation of perfect conductive network at RGO loading level of 1.66 vol.%, which was confirmed by TEM analysis.

The percolation network formed at 1.66 vol.% RGO loading level, leading to the rapid increase of electrical conductivity of PA6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Pan B, Zhang S, Li W, Zhao J, Liu J, Zhang Y, Zhang Y (2012). Wear 294:395

    Article  Google Scholar 

  2. Wang W, Meng L, Huang Y (2014) Hydrolytic degradation of monomer casting nylon in subcritical water. Polym Degrad Stab 110:312–317

    Article  CAS  Google Scholar 

  3. Krupa I, Miková G, Novák I, Janigová I, Nógellová Z, Lednický F, Prokeš J (2007) Electrically conductive composites of polyethylene filled with polyamide particles coated with silver. Eur Polym J 43:2401–2413

    Article  CAS  Google Scholar 

  4. Hochberg A, Versieck J (2001) Shielding for EMI and antistatic plastic resins with stainless steel fibres. Plastics Additives & Compounding 3:24–28

    Article  CAS  Google Scholar 

  5. Chodak I, Omastova M, Pionteck J (2001) Relation between electrical and mechanical properties of conducting polymer composites. J Appl Polym Sci 82:1903–1906

    Article  CAS  Google Scholar 

  6. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  CAS  Google Scholar 

  7. Edwards RS, Coleman KS (2013) Graphene synthesis: relationship to applications. Nanoscale 5:38–51

    Article  CAS  Google Scholar 

  8. Zhang Y, Heo Y-J, Son Y-R, In I, An K-H, Kim B-J, Park S-J (2019) Recent advanced thermal interfacial materials: A review of conducting mechanisms and parameters of carbon materials. Carbon 142:445–460

    Article  CAS  Google Scholar 

  9. Hu Y, Liu X, Tian L, Zhao T, Wang H, Liang X, Zhou F, Zhu P, Li G, Sun R, Wong C-P (2018) Multidimensional Ternary Hybrids with Synergistically Enhanced Electrical Performance for Conductive Nanocomposites and Prosthetic Electronic Skin. ACS Appl Mater Interfaces 10:38493–38505

    Article  CAS  Google Scholar 

  10. Yang H, Yao X, Yuan L, Gong L, Liu Y (2019) Strain-sensitive electrical conductivity of carbon nanotube-graphene-filled rubber composites under cyclic loading. Nanoscale 11:578–586

    Article  CAS  Google Scholar 

  11. Das SK (2018) Graphene: A Cathode Material of Choice for Aluminum-Ion Batteries. Angew Chem Int Ed 57:16606–16617

    Article  CAS  Google Scholar 

  12. Gao B, Zhang R, He M, Sun L, Wang C, Liu L, Zhao L, Cui H, Cao A (2016) Effect of a multiscale reinforcement by carbon fiber surface treatment with graphene oxide/carbon nanotubes on the mechanical properties of reinforced carbon/carbon composites. Compos A: Appl Sci Manuf 90:433–440

    Article  CAS  Google Scholar 

  13. Yang Z, Tian J, Yin Z, Cui C, Qian W, Wei F (2019) Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: A review. Carbon 141:467–480

    Article  CAS  Google Scholar 

  14. Du N, Zhao C-y, Chen Q, Wu G, Lu R (2010) Preparation and characterization of nylon 6/graphite composite. Mater Chem Phys 120:167–171

    Article  CAS  Google Scholar 

  15. O’Neill A, Bakirtzis D, Dixon D (2014) Polyamide 6/Graphene composites: The effect of in situ polymerisation on the structure and properties of graphene oxide and reduced graphene oxide. Eur Polym J 59:353–362

    Article  Google Scholar 

  16. Bouhfid R, Arrakhiz FZ, Qaiss A (2016) Effect of graphene nanosheets on the mechanical, electrical, and rheological properties of polyamide 6/acrylonitrile-butadiene-styrene blends. Polym Compos 37:998–1006

    Article  CAS  Google Scholar 

  17. Steurer P, Wissert R, Thomann R, Mülhaupt R (2009) Functionalized Graphenes and Thermoplastic Nanocomposites Based upon Expanded Graphite Oxide. Macromol Rapid Commun 30:316–327

    Article  CAS  Google Scholar 

  18. Lv Q, Wu D, Qiu Y, Chen J, Yao X, Ding K, Wei N (2015) Crystallization of Poly(ϵ-caprolactone) composites with graphite nanoplatelets: Relations between nucleation and platelet thickness. Thermochim Acta 612:25–33

    Article  CAS  Google Scholar 

  19. **ang M, Li C, Ye L (2018) Reactive melt processing of polyamide 6/reduced graphene oxide nano-composites and its electrically conductive behavior. J Ind Eng Chem 62:84–95

    Article  CAS  Google Scholar 

  20. Carella JM, Graessley WW, Fetters LJ (1984) Effects of chain microstructure on the viscoelastic properties of linear polymer melts: polybutadienes and hydrogenated polybutadienes. Macromolecules 17:2775–2786

    Article  CAS  Google Scholar 

  21. Katoh Y, Okamoto M (2009) Crystallization controlled by layered silicates in nylon 6–clay nano-composite. Polymer 50:4718–4726

    Article  CAS  Google Scholar 

  22. Guan L-Z, Wan Y-J, Gong L-X, Yan D, Tang L-C, Wu L-B, Jiang J-X, Lai G-Q (2014) Toward effective and tunable interphases in graphene oxide/epoxy composites by grafting different chain lengths of polyetheramine onto graphene oxide. J Mater Chem A 2:15058

    Article  CAS  Google Scholar 

  23. Tang G, Jiang Z-G, Li X, Zhang H-B, Hong S, Yu Z-Z (2014) Electrically conductive rubbery epoxy/diamine-functionalized graphene nanocomposites with improved mechanical properties. Compos Part B 67:564–570

    Article  CAS  Google Scholar 

  24. Lux F (1993) Models proposed to explain the electrical conductivity of mixtures made of conductive and insulating materials. J Mater Sci 28:285–301

    Article  CAS  Google Scholar 

  25. Lorenzo A, Müller A (2008) Estimation of the nucleation and crystal growth contributions to the overall crystallization energy barrier. J Polym Sci B Polym Phys 46:1478–1487

    Article  CAS  Google Scholar 

  26. Sabino M, Feijoo J, Muller A (2000) Crystallisation and morphology of poly(p-dioxanone). Macromol Chem Phys 201:2687–2698

    Article  CAS  Google Scholar 

  27. Müller AJ, Albuerne J, Marquez L, Raquez J-M, Degée P, Dubois P, Hobbs J, Hamley IW (2005) Self-nucleation and crystallization kinetics of double crystalline poly(p-dioxanone)-b-poly(ε-caprolactone) diblock copolymers. Faraday Discuss 128:231–252

    Article  Google Scholar 

  28. Gurland J (1966). Trans Met Soc AIME 236:642

    CAS  Google Scholar 

  29. J. D. Hoffman, G. T. Davis, and J. I. Lauritzen Jr (1976) In "Treatise on solid state chemistry", pp. 497, Springer

  30. Bo Y, Zhaoyi H, Lu L, **ngyue S, Zengheng H (2018). J Polym Res 26(9)

  31. Xu J-Z, Liang Y-Y, Huang H-D, Zhong G-J, Lei J, Chen C, Li Z-M (2012) Isothermal and nonisothermal crystallization of isotactic polypropylene/graphene oxide nanosheet nanocomposites. J Polym Res 19:9975

    Article  Google Scholar 

  32. Kim CI, Oh SM, Oh KM, Gansukh E, Lee H-i, Jeong HM (2014) Graphenes for low percolation threshold in electroconductive nylon 6 composites. Polym Int 63:1003–1010

    Article  CAS  Google Scholar 

  33. Ramesh C, Gowd EB (2001) High-Temperature X-ray Diffraction Studies on the Crystalline Transitions in the α- and γ-Forms of Nylon-6. Macromolecules 34:3308–3313

    Article  CAS  Google Scholar 

  34. Wu C-M, Cheong S-S, Chang T-H (2016) Rheological properties of graphene/nylon 6 nanocomposites prepared by masterbatch melt mixing. J Polym Res 23:242

    Article  Google Scholar 

  35. Filippone G, Netti P, Acierno D (2007) Microstructural evolutions of LDPE/PA6 blends by rheological and rheo-optical analyses: Influence of flow and compatibilizer on break-up and coalescence processes. Polymer 48:564–573

    Article  CAS  Google Scholar 

  36. He Z, Zhang B, Zhang H-B, Zhi X, Hu Q, Gui C-X, Yu Z-Z (2014) Improved rheological and electrical properties of graphene/polystyrene nanocomposites modified with styrene maleic anhydride copolymer. Compos Sci Technol 102:176–182

    Article  CAS  Google Scholar 

  37. Wu D, Wu L, Sun Y, Zhang M (2007) Rheological properties and crystallization behavior of multi-walled carbon nanotube/poly(ɛ-caprolactone) composites. J Polym Sci B Polym Phys 45:3137–3147

    Article  CAS  Google Scholar 

  38. Wu D, Lv Q, Feng S, Chen J, Chen Y, Qiu Y, Yao X (2015) Polylactide composite foams containing carbon nanotubes and carbon black: Synergistic effect of filler on electrical conductivity. Carbon 95:380–387

    Article  CAS  Google Scholar 

  39. Ding K, Wei N, Zhou Y, Wang Y, Wu D, Liu H, Yu H, Zhou C, Chen J, Chen C (2016) Viscoelastic behavior and model simulations of poly(butylene adipate-co-terephthalate) biocomposites with carbon nanotubes: Hierarchical structures and relaxation. J Compos Mater 50:1805–1816

    Article  CAS  Google Scholar 

  40. Wang Y, Cheng Y, Chen J, Wu D, Qiu Y, Yao X, Zhou Y, Chen C (2015) Percolation networks and transient rheology of polylactide composites containing graphite nanosheets with various thicknesses. Polymer 67:216–226

    Article  CAS  Google Scholar 

  41. Sarman S, Laaksonen A (2009) Evaluation of the viscosities of a liquid crystal model system by shear flow simulation. Chem Phys Lett 479:47–51

    Article  CAS  Google Scholar 

  42. J. D. Ferry (1980) "Viscoelastic properties of polymers", John Wiley & Sons

  43. Y.-H. Lin (2011) "Polymer viscoelasticity: basics, molecular theories, experiments and simulations", World Scientific

  44. Doi M, Edwards S (1978). J Chem Soc Faraday Trans 74:1818

    Article  CAS  Google Scholar 

  45. Mayoral B, Harkin-Jones E, Khanam P, AlMaadeed M, Ouederni M, Hamilton A, Sun D (2015) Melt processing and characterisation of polyamide 6/graphene nanoplatelet composites. RSC Adv 5:52395–52409

    Article  CAS  Google Scholar 

  46. Zang CG, Zhu XD, Jiao QJ (2015) Enhanced mechanical and electrical properties of nylon-6 composite by using carbon fiber/graphene multiscale structure as additive. J Appl Polym Sci 132

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Fundamental Research Project for Changzhou of China (CJ20180056), and Science and Technology Project of Sichuan Province (2019YFG0240).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Ye.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**ang, M., Li, C. & Ye, L. Polyamide 6/reduced graphene oxide nano-composites prepared via reactive melt processing: formation of crystalline/network structure and electrically conductive properties. J Polym Res 26, 104 (2019). https://doi.org/10.1007/s10965-019-1765-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1765-x

Keywords

Navigation