Log in

Nonautonomous Dynamics: Classification, Invariants, and Implementation

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

The work is a brief review of the results obtained in nonautonomous dynamics based on the concept of uniform equivalence of nonautonomous systems. This approach to the study of nonautonomous systems was proposed in [24] and further developed in the works of the second author, and recently — jointly by both authors. Such an approach seems to be fruitful and promising, since it allows one to develop a nonautonomous analogue of the theory of dynamical systems for the indicated classes of systems and give a classification of some natural classes of nonautonomous systems using combinatorial type invariants. We show this for classes of nonautonomous gradient-like vector fields on closed manifolds of dimensions one, two, and three. In the latter case, a new equivalence invariant appears, the wild embedding type for stable and unstable manifolds [5, 8], as shown in a recent paper by the authors [19].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. M. Akhmet’ev, T. V. Medvedev, and O. V. Pochinka, “On the number of the classes of topological conjugacy of Pixton diffeomorphisms,” Qual. Theory Dyn. Syst., 20, 76 (2021).

  2. V. M. Alekseev and S. V. Fomin, “Mikhail Valerievich Bebutov,” Usp. Mat. Nauk, 25, No 3, 237–239 (1970).

    Google Scholar 

  3. L. Amerio, “Soluzioni quasiperiodiche, o limitate, di sistemi differenziali non lineari quasiperiodici, o limitati,” Ann. Mat. Pura Appl., 39, 97–119 (1955).

    Article  MathSciNet  Google Scholar 

  4. D. V. Anosov, “Geodesic flows on closed Riemannian manifolds of negative curvature,” Tr. MIAN, 90, 3–210 (1967).

    MathSciNet  Google Scholar 

  5. E. Artin and R. Fox, “Some wild cells and spheres in three-dimensional space,” Ann. Math., 49, 979–990 (1948).

    Article  MathSciNet  Google Scholar 

  6. L. Barreira and C. Valls, Stability of Nonautonomous Differential Equations, Springer, Berlin–Heidelberg (2008).

    Book  Google Scholar 

  7. S. Bochner, “Sur les fonctions presque périodiques de Bohr,” C. R., 180, 1156–1158 (1925).

    Google Scholar 

  8. Ch. Bonatti and V. Grines, “Knots as topological invariant for gradient-like diffeomorphisms of the sphere S3,” J. Dyn. Control Syst., 6, No 4, 579–602 (2000).

    Article  Google Scholar 

  9. Ch. Bonatti, V. Grines, V. Medvedev, and E. Pecou, “Topological classification of gradient-like diffeomorphisms on 3-manifolds,” Topology, 43, 369–391 (2004).

    Article  MathSciNet  Google Scholar 

  10. C. Bonatti, V. Z. Grines, and O. Pochinka, “Topological classification of Morse–Smale diffeomorphisms on 3-manifolds,” Duke Math. J., 168, No 13, 2507–2558 (2019).

    Article  MathSciNet  Google Scholar 

  11. J. Cerf, Sur les Difféomorphismes de la Sphére de Dimension Trois (Γ4=0), Springer, Berlin (1968).

    Book  Google Scholar 

  12. W. A. Coppel, Stability and Asymptotic Behavior of Differential Equations, D.C. Heath and Company, Boston (1965).

    Google Scholar 

  13. C. Corduneanu, Almost Periodic Oscillations and Waves, Springer, New York (2009).

    Book  Google Scholar 

  14. Yu. L. Daletskiy and M. G. Kreyn, Stability of Solutions of Differential Equations in a Banach Space [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  15. R. J. Daverman and G. A. Venema, Embedding in Manifolds, AMS, Providence (2009).

  16. B. P. Demidovich, Lectures on the Mathematical Theory of Stability [in Russian], Nauka, Moscow (1967).

    Google Scholar 

  17. J. Favard, “Sur les e\(\acute{\mathrm{q}}\)uations différentielles á coefficients presque-periodiques,” Acta Math., 51, 31–81 (1927).

  18. S. V. Gonchenko, L. P. Shilnikov, and D. V. Turaev, “On dynamical properties of multidimensional diffeomorphisms from Newhouse regions,” Nonlinearity, 21, No 5, 923–972 (2008).

    Article  MathSciNet  Google Scholar 

  19. V. Z. Grines and L. M. Lerman, “Nonautonomous vector fields on S3: simple dynamics and wild separatrix embedding,” Teor. Mat. Fiz., 212, No 1, 15–32 (2022).

    Article  Google Scholar 

  20. V. Grines, T. Medvedev, and O. Pochinka, Dynamical Systems on 2-and 3-Manifolds, Springer, Cham (2016).

    Book  Google Scholar 

  21. O. G. Harrold, H. C. Griffith, and E. E. Posey, “A characterization of tame curves in three-space,” Trans. Am. Math. Soc., 79, 12–34 (1955).

    Article  MathSciNet  Google Scholar 

  22. L. M. Lerman, On Nonautonomous Dynamical Systems of the Morse–Smale Type, Thesis, Gor’k. Gos. Univ., Gor’kiy (1975).

    Google Scholar 

  23. L. M. Lerman and E. V. Gubina, “Nonautonomous gradient-like vector fields on the circle: classification, structural stability and autonomization,” Discrete Contin. Dyn. Syst. Ser. S., 13, No 4, 1341–1367 (2020).

    MathSciNet  Google Scholar 

  24. L. M. Lerman and L. P. Shil’nikov, “On the classification of rough nonautonomous systems with a finite number of cells,” Dokl. AN SSSR, 209, No 3, 544–547 (1973).

  25. L. M. Lerman and L. P. Shilnikov, “Homoclinical structures in nonautonomous systems: nonautonomous chaos,” Chaos, 2, No 3, 447–454 (1992).

    Article  MathSciNet  Google Scholar 

  26. B. M. Levitan and V. V. Zhikov, Almost Periodic Functions and Differential Equations [in Russian], MSU, Moscow (1978).

    Google Scholar 

  27. L. Marcus, “Asymptotically autonomous differential equations,” In: Contributions to the Theory of Nonlinear Oscillations III, Princeton Univ. Press, Princeton, pp. 17–29 (1956).

  28. J. L. Massera and J. J. Sch¨affer, Linear Differential Equations and Function Spaces, Academic Press, New York–London (1966).

  29. B. Mazur, “A note on some contractible 4-manifolds,” Ann. Math., 73, No 1, 221–228 (1961).

    Article  MathSciNet  Google Scholar 

  30. A. D. Morozov and K. E. Morozov, “Transitory shift in the flutter problem,” Nelin. Dinamika, 11, No 3, 447–457 (2015).

    Article  Google Scholar 

  31. B. A. Mosovsky and J. D. Meiss, “Transport in transitory dynamical systems,” SIAM J. Appl. Dyn. Syst., 10, No 1, 35–65 (2011).

    Article  MathSciNet  Google Scholar 

  32. M. H. Newman, Elements of the Topology of Plane Sets of Points, Cambridge Univ. Press, Cambridge (1964).

    Google Scholar 

  33. O. Perron, “Die Stabilit¨atsfrage bei Differentialgleichungen,” Math. Z., 32, 703–728 (1930).

    Article  MathSciNet  Google Scholar 

  34. D. Pixton, “Wild unstable manifolds,” Topology, 16, No 2, 167–172 (1977).

    Article  MathSciNet  Google Scholar 

  35. O. Pochinka and D. Shubin, “On 4-dimensional flows with wildly embedded invariant manifolds of a periodic orbit,” Appl. Math. Nonlinear Sci. Ser., 5, No 2, 261–266 (2020).

    MathSciNet  Google Scholar 

  36. G. Sell, “Nonautonomous differential equations and topological dynamics. I,” Trans. Am. Math. Soc., 127, 241–262 (1967).

    MathSciNet  Google Scholar 

  37. G. Sell, “Nonautonomous differential equations and topological dynamics II,” Trans. Am. Math. Soc., 127, 263–283 (1967).

    Article  MathSciNet  Google Scholar 

  38. S. Smale, “Morse inequality for a dynamical systems,” Bull. Am. Math. Soc., 66, 43–49 (1960).

    Article  Google Scholar 

  39. A. G. Vainshtein and L. M. Lerman, “Nonautonomous extensions over diffeomorphisms and proximity geometry,” Usp. Mat. Nauk, 31, No 5, 231–232 (1976).

    Google Scholar 

  40. A. G. Vainshtein and L. M. Lerman, “Uniform structures and equivalence of diffeomorphisms,” Mat. Zametki, 23, No 5, 739–752 (1978).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Lerman.

Additional information

Translated from Sovremennaya Matematika. Fundamental’nye Napravleniya (Contemporary Mathematics. Fundamental Directions), Vol. 68, No. 4, Differential and Functional Differential Equations, 2022.

V. Z. Grines is deceased.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grines, V.Z., Lerman, L.M. Nonautonomous Dynamics: Classification, Invariants, and Implementation. J Math Sci (2024). https://doi.org/10.1007/s10958-024-07238-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10958-024-07238-2

Keywords

Navigation