Log in

Boundary Singular Problems for Quasilinear Equations Involving Mixed Reaction–Diffusion

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We study the existence of solutions to the problem

\(\begin{array}{c}\begin{array}{cccc}-\Delta u+{u}^{p}-M{\left|\nabla u\right|}^{q}=0& \text{in}&\Omega ,& (1)\end{array}\\ \begin{array}{ccc}u=\mu & \text{on}& \partial\Omega \end{array}\end{array}\)

in a bounded domain Ω, where p > 1, 1 < q < 2, M > 0, μ is a nonnegative Radon measure in Ω, and the associated problem with a boundary isolated singularity at aΩ,

\(\begin{array}{c}\begin{array}{cccc}-\Delta u+{u}^{p}-M{\left|\nabla u\right|}^{q}=0& \text{in}&\Omega ,& (2)\end{array}\\ \begin{array}{ccc}u=0& \text{on}& \partial\Omega \end{array}\backslash \left\{\alpha \right\}.\end{array}\)

The difficulty lies in the opposition between the two nonlinear terms which are not on the same nature. Existence of solutions to (1) is obtained under a capacitary condition

\(\begin{array}{cc}\mu \left(K\right)\le c\text{min}\left\{{cap}_{\frac{2}{p},{p}{\prime}}^{\partial\Omega },{cap}_{\frac{2-q}{q},{q}{\prime}}^{\partial\Omega }\right\}& \text{for\;all\;compacts\;}K\subset \partial\Omega .\end{array}\)

Problem (2) depends on several critical exponents on p and q as well as the position of q with respect to \(\frac{2p}{p+1}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

References

  1. D. Adams and L. Hedberg, Function Spaces and Potential Theory, Springer, London–Berlin–Heidelberg–New York (1996).

  2. D. R. Adams and M. Pierre, “Capacitary strong type estimates in semilinear problems,” Ann. Inst. Fourier (Grenoble), 41, 117–135 (1991).

    Article  MathSciNet  Google Scholar 

  3. S. Alarcón, J. García-Melián, and A. Quaas, “Nonexistence of positive supersolutions to some nonlinear elliptic problems,” J. Math. Pures Appl., 90, 618–634 (2013).

    Article  MathSciNet  Google Scholar 

  4. P. Baras and M. Pierre, “Singularités éliminables pour des équations semilinéaires,” Ann. Inst. Fourier, 34, No. 1, 185–206 (1984).

    Article  MathSciNet  Google Scholar 

  5. M. F. Bidaut-Véron, M. Garcia-Huidobro, and L. Véron, “A priori estimates for elliptic equations with reaction terms involving the function and its gradient,” Math. Ann., 378, 13–58 (2020).

    Article  MathSciNet  Google Scholar 

  6. M. F. Bidaut-Véron, M. Garcia-Huidobro, and L. Véron, “Measure data problems for a class of elliptic equations with mixed absorption-reaction,” Adv. Nonlinear. Stud., 21, 261–280 (2020).

    Article  MathSciNet  Google Scholar 

  7. M. F. Bidaut-Véron, M. Garcia-Huidobro, and L. Véron, “Boundary singular solutions of a class of equations with mixed absorption-reaction,” Calc. Var. Part. Differ. Equ., 61, No. 3, 113 (2022).

  8. M. F. Bidaut-Véron, G. Hoang, Q. H. Nguyen, and L. Véron, “An elliptic semilinear equation with source term and boundary measure data: the supercritical case,” J. Funct. Anal., 269, 1995–2017 (2015).

    Article  MathSciNet  Google Scholar 

  9. M. F. Bidaut-Véron, A. Ponce, and L. Véron, “Isolated boundary singularities of semilinear elliptic equations,” Calc. Var. Part. Differ. Equ., 40, 183–221 (2011).

    Article  MathSciNet  Google Scholar 

  10. M. F. Bidaut-Véron and L. Véron, “Trace and boundary singularities of positive solutions of a class of quasilinear equations,” Discr. Cont. Dyn. Syst., to appear (2022).

  11. L. Boccardo, F. Murat, and J.P. Puel, “Résultats d’existence pour certains probl`emes elliptiques quasilinéaires,” Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), 11, 213–235 (1984).

    Google Scholar 

  12. J. L. Doob, Classical Potential Theory and Its Probabilistic Counterpart, Springer, London–Berlin–Heidelberg–New York (1984).

  13. B. Gidas and J. Spruck, “Global and local behaviour of positive solutions of nonlinear elliptic equations,” Commun. Pure Appl. Math., 34, 525–598 (1981).

    Article  Google Scholar 

  14. D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, London–Berlin–Heidelberg–New York (1983).

  15. A. Gmira and L. Véron, “Boundary singularities of solutions of some nonlinear elliptic equations,” Duke Math. J., 64, 271–324 (1991).

    Article  MathSciNet  Google Scholar 

  16. M. Marcus and P. T. Nguyen, “Elliptic equations with nonlinear absorption depending on the solution and its gradient,” Proc. Lond. Math. Soc., 111, 205–239 (2015).

    Article  MathSciNet  Google Scholar 

  17. M. Marcus and L. Véron, “The boundary trace of positive solutions of semilinear elliptic equations: the subcritical case,” Arch. Ration. Mech. Anal., 144, 200–231 (1998).

    Article  MathSciNet  Google Scholar 

  18. M. Marcus and L. Véron, “Removable singularities and boundary traces,” J. Math. Pures Appl., 80, 879–900 (2001).

    Article  MathSciNet  Google Scholar 

  19. M. Marcus and L. Véron, Nonlinear Elliptic Equations Involving Measures, de Gruyter, Berlin (2014).

    Google Scholar 

  20. P. T. Nguyen and L. Véron, “Boundary singularities of solutions to elliptic viscous Hamilton–Jacobi equations,” J. Funct. Anal. 263, 1487–1538 (2012).

    Article  MathSciNet  Google Scholar 

  21. L. Véron, “Singular solutions of some nonlinear elliptic equations,” Nonlinear Anal., 5, 225–242 (1981).

    Article  MathSciNet  Google Scholar 

  22. L. Véron, Local and Global Aspects of Quasilinear Degenerate Elliptic Equations, World Scientific, Hackensack (2017).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Véron.

Additional information

Translated from Sovremennaya Matematika. Fundamental’nye Napravleniya (Contemporary Mathematics. Fundamental Directions), Vol. 68, No. 4, Differential and Functional Differential Equations, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Véron, L. Boundary Singular Problems for Quasilinear Equations Involving Mixed Reaction–Diffusion. J Math Sci (2024). https://doi.org/10.1007/s10958-024-07236-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10958-024-07236-4

Keywords

Navigation