Log in

Study of the Dynamic Stress State of Microporous Media Within the Framework of the Cosserat Pseudocontinuum

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We develop an analytic-numerical method for the investigation of the dynamic stress state of an unbounded layered element containing a hole within the framework of Cosserat pseudocontinuum. The method is based on the application of the Fourier transformation with respect to the time and the method of boundary integral equations. On the basis of the proposed method, we study the concentrations of the dynamic circumferential and radial stresses in biomaterials near circular and elliptic holes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ya. I. Kunets’, V. V. Matus, and V. V. Porokhovs’kyi, “Dynamic concentration of stresses in the neighborhood of a deepened thin rectilinear inclusion with low stiffness under the conditions of antiplane deformation,” Mat. Met. Fiz.-Mekh. Polya, 50, No. 1, 136–139 (2007).

    Google Scholar 

  2. A. P. Poddubnyak, “Echo-signal from an elastic sphere subjected to the action of a sharply directed sound pulse,” Mat. Met. Fiz.- Mekh. Polya, Issue 9, 92–95 (1979).

    MATH  Google Scholar 

  3. G. N. Savin and N. A. Shulga, “Dynamic plane problem of the moment theory of elasticity,” Prikl. Mekh., 3, No. 6, 1–7 (1967); English translation: Soviet Appl. Mech., 3, No. 6, 1–4 (1967); https://doi.org/https://doi.org/10.1007/BF01262150.

  4. V. I. Shvabyuk, O. A. Mikulich, and V. V. Shvabyuk, “Stress state of foam media with tunnel openings under nonstationary dynamic loading,” Probl. Prochn., No. 6, 99–110 (2017); English translation: Strength Mater., 49, No. 6, 818–828 (2017). https://doi.org/https://doi.org/10.1007/s11223-018-9927-3.

  5. М. Bonnet, Équations Intégrales et Éléments de Frontière. Application en Mécanique des Solides et des Fluides, CNRS Éditions; Éditions EYROLLES, Paris (1995).

  6. P. M. Buechner and R. S. Lakes, “Size effects in the elasticity and viscoelasticity of bone,” Biomech. Model. Mechanobiol., 1, No. 4, 295–301 (2003). https://doi.org/https://doi.org/10.1007/s10237-002-0026-8.

  7. I. Giorgio, U. Andreaus, F. dell’Isola, and T. Lekszycki, “Viscous second gradient porous materials for bones reconstructed with bio-resorbable grafts,” Extreme Mech. Lett., 13, 141–147 (2017). https://doi.org/https://doi.org/10.1016/j.eml.2017.02.008.

  8. S.-Y. Hsia, S.-M. Chiu, and J.-W. Cheng, “Wave propagation at the human muscle-compact bone interface,” Theor. Appl. Mech., 33, No. 3, 223–243 (2006).

    Article  Google Scholar 

  9. R. S. Lakes, “Dynamical study of couple stress effects in human compact bone,” Trans. ASME. J. Biomech. Eng., 104, No. 1, 6–11 (1982). doi:https://doi.org/10.1115/1.3138308.

    Article  Google Scholar 

  10. R. S. Lakes, H. S. Yoon, and J. L. Katz, “Slow compressional wave propagation in wet human and bovine cortical bone,” Science, 220, No. 4596, 513–515 (1983). doi: https://doi.org/10.1126/science.6836296.

    Article  Google Scholar 

  11. H. Ramézani, A. El-Hraiech, J. Jeong, and C. Benhamou, “Size effect method application for modeling of human cancellous bone using geometrically exact Cosserat elasticity,” Comput. Meth. Appl. Mech. Eng., 237–240, 227–243 (2012). https://doi.org/https://doi.org/10.1016/j.cma.2012.05.002.

  12. H. Ramézani and J. Jeong, “Micro-dilatation theory application to the spongy bones: Theoretical aspects and numerical modeling,” in: Proc. of the Conference: 22ème Congr. Français de Mécanique (Lyon, France, 2015). DOI: https://doi.org/10.13140/RG.2.1.1854.6409.

  13. V. Shvabyuk, H. Sulym, and O. Mikulich, “Stress state of plate with incisions under the action of oscillating concentrated forces,” Acta Mech. Autom., 9, No. 3, 140–144 (2015). https://doi.org/https://doi.org/10.1515/ama-2015-0023.

  14. J. F. C. Yang and R. S. Lakes, “Transient study of couple stress in compact bone: torsion,” Trans. ASME. J. Biomech. Eng., 103, No. 1, 275–279 (1981).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Shvabyuk.

Additional information

Translated from Matematychni Metody ta Fizyko-Mekhanichni Polya, Vol. 61, No. 2, pp. 134–140, April–June, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shvabyuk, V.I., Mikulich, O.A. Study of the Dynamic Stress State of Microporous Media Within the Framework of the Cosserat Pseudocontinuum. J Math Sci 253, 148–155 (2021). https://doi.org/10.1007/s10958-021-05219-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-021-05219-3

Keywords

Navigation