Log in

Physiochemical Properties and Molecular Dynamics Simulations of Phosphonium and Ammonium Based Deep Eutectic Solvents

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Deep eutectic solvents (DES) are considered as second-generation ionic liquids and are used in many applications such as separation, extraction and electrochemistry. In the current work, a set of four DES is synthesized by mixing a hydrogen bond donor (HBD) (ethylene glycol/glycerol) with a quaternary ammonium or phosphonium salt or the hydrogen bond acceptor (HBA). Here the HBA, namely methyltriphenylphosphonium bromide and tetrabutylammonium bromide (TBAB), were mixed with the HBD in a molar ratio of 1:4. Fourier transform infrared and thermogravimetric analysis analysis were then carried out to understand the functional groups along with their thermal stability. NMR analysis was also used to validate the molar ratio of 1:4 in solution. Thereafter, the four DESs were simulated with molecular dynamics simulations to evaluate and measure the pure component properties of these solvents at room temperature. Thermodynamics insights such as non-bonded interaction energies, hydrogen bonds, coordination number and radial distribution functions were also discussed to understand their atomistic interactions involved in the eutectic mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abbott, A.P., Capper, G., Davies, D.L., Rasheed, R.K., Tambyrajah, V.: Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. (2003). https://doi.org/10.1039/B210714G

    Article  Google Scholar 

  2. Zhang, Q., Vigier, K.D.O., Royer, S., Jérôme, F.: Deep eutectic solvents: syntheses, properties and applications. Chem. Soc. Rev. 41, 7108–7146 (2012)

    Article  CAS  PubMed  Google Scholar 

  3. Smith, E.L., Abbott, A.P., Ryder, K.S.: Deep eutectic solvents (DESs) and their applications. Chem. Rev. 114, 11060–11082 (2014)

    Article  CAS  PubMed  Google Scholar 

  4. Abbott, A.P., Boothby, D., Capper, G., Davies, D.L., Rasheed, R.K.: Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J. Am. Chem. Soc. 126, 9142–9147 (2004)

    Article  CAS  PubMed  Google Scholar 

  5. Oliveira, F.S., Pereiro, A.B., Rebelo, L.P., Marrucho, I.M.: Deep eutectic solvents as extraction media for azeotropic mixtures. Green Chem. 15, 1326–1330 (2013)

    Article  CAS  Google Scholar 

  6. Gu, T., Zhang, M., Tan, T., Chen, J., Li, Z., Zhang, Q., Qiu, H.: Deep eutectic solvents as novel extraction media for phenolic compounds from model oil. Chem. Commun. 50, 11749–11752 (2014)

    Article  CAS  Google Scholar 

  7. Naik, P.K., Dehury, P., Paul, S., Banerjee, T.: Evaluation of deep eutectic solvent for the selective extraction of toluene and quinoline at T = 308.15 K and p = 1 bar. Fluid Phase Equilib. 423, 146–155 (2016)

    Article  CAS  Google Scholar 

  8. Kareem, M.A., Mjalli, F.S., Hashim, M.A., Hadj-Kali, M.K., Bagh, F.S.G., Alnashef, I.M.: Phase equilibria of toluene/heptane with deep eutectic solvents based on ethyltriphenylphosphonium iodide for the potential use in the separation of aromatics from naphtha. J. Chem. Thermodyn. 65, 138–149 (2013)

    Article  CAS  Google Scholar 

  9. Zhekenov, T., Toksanbayev, N., Kazakbayeva, Z., Shah, D., Mjalli, F.S.: Formation of type III deep eutectic solvents and effect of water on their intermolecular interactions. Fluid Phase Equilib. 441, 43–48 (2017)

    Article  CAS  Google Scholar 

  10. Dai, Y., van Spronsen, J., Witkamp, G.J., Verpoorte, R., Choi, Y.H.: Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta 766, 61–68 (2013)

    Article  CAS  PubMed  Google Scholar 

  11. Mohan, M., Naik, P.K., Banerjee, T., Goud, V.V., Paul, S.: Solubility of glucose in tetrabutylammonium bromide based deep eutectic solvents: experimental and molecular dynamic simulations. Fluid Phase Equilib. 448, 168–177 (2017)

    Article  CAS  Google Scholar 

  12. Naik, P.K., Paul, S., Banerjee, T.: Liquid–liquid equilibria measurements for the extraction of poly aromatic nitrogen hydrocarbons with a low cost deep eutectic solvent: experimental and theoretical insights. J. Mol. Liq. 243, 542–552 (2017)

    Article  CAS  Google Scholar 

  13. Perkins, S.L., Painter, P., Colina, C.M.: Molecular dynamic simulations and vibrational analysis of an ionic liquid analogue. J. Phys. Chem. B 117, 10250–10260 (2013)

    Article  CAS  PubMed  Google Scholar 

  14. Kareem, M.A., Mjalli, F.S., Hashim, M.A., AlNashef, I.M.: Phosphonium-based ionic liquids analogues and their physical properties. J. Chem. Eng. Data 55, 4632–4637 (2010)

    Article  CAS  Google Scholar 

  15. Tang, B., Row, K.H.: Recent developments in deep eutectic solvents in chemical sciences. Monatsh. Chem. 144, 1427–1454 (2013)

    Article  CAS  Google Scholar 

  16. Naik, P.K., Mohan, M., Banerjee, T., Paul, S., Goud, V.V.: Molecular dynamic simulations for the extraction of quinoline from heptane in the presence of a low-cost phosphonium-based deep eutectic solvent. J. Phys. Chem. B 122, 4006–4015 (2018)

    Article  CAS  PubMed  Google Scholar 

  17. Kohn, W., Becke, A.D., Parr, R.G.: Density functional theory of electronic structure. J. Phys. Chem. 100, 12974–12980 (1996)

    Article  CAS  Google Scholar 

  18. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Oxford University Press, Oxford (1989)

    Google Scholar 

  19. García, G., Atilhan, M., Aparicio, S.: An Approach for the rationalization of melting temperature for deep eutectic solvents from DFT. Chem. Phys. Lett. 634, 151–155 (2015)

    Article  CAS  Google Scholar 

  20. Ashworth, C.R., Matthews, R.P., Welton, T., Hunt, P.A.: Doubly ionic hydrogen bond interactions within the choline chloride–urea deep eutectic solvent. Phys. Chem. Chem. Phys. 18, 18145–18160 (2016)

    Article  CAS  PubMed  Google Scholar 

  21. Kaur, S., Sharma, S., Kashyap, H.K.: Bulk and interfacial structures of reline deep eutectic solvent: a molecular dynamics study. J. Chem. Phys. 147, 194507 (2017)

    Article  CAS  PubMed  Google Scholar 

  22. Kaur, S., Gupta, A., Kashyap, H.K.: Nanoscale spatial heterogeneity in deep eutectic solvents. J. Phys. Chem. B 120, 6712–6720 (2016)

    Article  CAS  PubMed  Google Scholar 

  23. Kareem, M.A., Mjalli, F.S., Hashim, M.A., AlNashef, I.M.: Liquid–liquid equilibria for the ternary system (phosphonium based deep eutectic solvent–benzene–hexane) at different temperatures: a new solvent introduced. Fluid Phase Equilib. 314, 52–59 (2012)

    Article  CAS  Google Scholar 

  24. Mulyono, S., Hizaddin, H.F., Alnashef, I.M., Hashim, M.A., Fakeeha, A.H., Hadj-Kali, M.K.: Separation of BTEX aromatics from n-octane using a (tetrabutylammonium bromide + sulfolane) deep eutectic solvent–experiments and COSMO-RS prediction. RSC Adv. 4, 17597–17606 (2014)

    Article  CAS  Google Scholar 

  25. Hadj-Kali, M.K., Mulyono, S., Hizaddin, H.F., Wazeer, I., El-Blidi, L., Ali, E., Hashim, M.A., AlNashef, I.M.: Removal of thiophene from mixtures with n-heptane by selective extraction using deep eutectic solvents. Ind. Eng. Chem. Res. 55, 8415–8423 (2016)

    Article  CAS  Google Scholar 

  26. Hizaddin, H.F., Hadj-Kali, M.K., Ramalingam, A., Ali Hashim, M.: Extractive denitrogenation of diesel fuel using ammonium- and phosphonium-based deep eutectic solvents. J. Chem. Thermodyn. 95, 164–173 (2016)

    Article  CAS  Google Scholar 

  27. Hizaddin, H.F., Ramalingam, A., Hashim, M.A., Hadj-Kali, M.K.O.: Evaluating the performance of deep eutectic solvents for use in extractive denitrification of liquid fuels by the conductor-like screening model for real solvents. J. Chem. Eng. Data 59, 3470–3487 (2014)

    Article  CAS  Google Scholar 

  28. Fraser, K.J., MacFarlane, D.R.: Phosphonium-based ionic liquids: an overview. Aust. J. Chem. 62, 309–321 (2009)

    Article  CAS  Google Scholar 

  29. Meng, X., Ballerat-Busserolles, K., Husson, P., Andanson, J.M.: Impact of water on the melting temperature of urea + choline chloride deep eutectic solvent. New J. Chem. 40, 4492–4499 (2016)

    Article  CAS  Google Scholar 

  30. Dai, Y., Witkamp, G.-J., Verpoorte, R., Choi, Y.H.: Tailoring properties of natural deep eutectic solvents with water to facilitate their applications. Food Chem. 187, 14–19 (2015)

    Article  CAS  PubMed  Google Scholar 

  31. Hammond, O.S., Bowron, D.T., Edler, K.J.: The Effect of water upon deep eutectic solvent nanostructure: an unusual transition from ionic mixture to aqueous solution. Angew. Chem. Int. Ed. 56, 9782–9785 (2017)

    Article  CAS  Google Scholar 

  32. Shahbaz, K., Baroutian, S., Mjalli, F., Hashim, M., AlNashef, I.: Densities of ammonium and phosphonium based deep eutectic solvents: prediction using artificial intelligence and group contribution techniques. Thermochim. Acta 527, 59–66 (2012)

    Article  CAS  Google Scholar 

  33. Keith, T., Millam, J., Eppinnett, K., Hovell, W.: Semichem, R., Gauss View 05, Dennington II. Inc., Shawnee Mission, KS, (2005)

  34. Bayly, C.I., Cieplak, P., Cornell, W., Kollman, P.A.: A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J. Phys. Chem. 97(40), 10269–10280 (1993)

    Article  CAS  Google Scholar 

  35. Frisch, M., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li X, Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T.M., Jr, Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09 Revision B. 01, Gaussian, Inc, Wallingford, CT. (2010)

  36. Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A., Case, D.A.: Development and testing of a general amber force field. J. Comput. Chem. 25, 1157–1174 (2004)

    Article  CAS  PubMed  Google Scholar 

  37. Wang, J., Wang, W., Kollman, P.A., Case, D.A.: Antechamber: an accessory software package for molecular mechanical calculations. J. Am. Chem. Soc. 222, U403 (2001)

    Google Scholar 

  38. Case, D., Darden, T., Cheatham, T., Simmerling, C., Wang, J., Duke, R., Luo, R., Walker, R., Zhang, W., Merz, K.: Amber 12 Reference Manual. University of California, San Francisco (2012)

    Google Scholar 

  39. Martínez, L., Andrade, R., Birgin, E.G., Martínez, J.M.: PACKMOL: a Package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009)

    Article  CAS  PubMed  Google Scholar 

  40. Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kale, L., Schulten, K.: Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hünenberger, P.H.: Thermostat algorithms for molecular dynamics simulations. In: Holm, C., Kremer, K. (eds.) Advanced Computer Simulation. Advances in Polymer Science, p. 130. Springer, Berlin (2005)

    Google Scholar 

  42. Andersen, H.C.: Rattle: a “velocity” version of the shake algorithm for molecular dynamics calculations. J. Comput. Phys. 52, 24–34 (1983)

    Article  CAS  Google Scholar 

  43. Humphrey, W., Dalke, A., Schulten, K.: VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996)

    Article  CAS  PubMed  Google Scholar 

  44. Nosé, S.: A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984)

    Article  Google Scholar 

  45. Hoover, W.G.: Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985)

    Article  CAS  Google Scholar 

  46. Wang, Y., Hou, Y., Wu, W., Liu, D., Ji, Y., Ren, S.: Roles of a hydrogen bond donor and a hydrogen bond acceptor in the extraction of toluene from n-heptane using deep eutectic solvents. Green Chem. 18, 3089–3097 (2016)

    Article  CAS  Google Scholar 

  47. Shahbaz, K., Bagh, F.G., Mjalli, F., Al Nashef, I., Hashim, M.: Prediction of refractive index and density of deep eutectic solvents using atomic contributions. Fluid Phase Equilib. 354, 304–311 (2013)

    Article  CAS  Google Scholar 

  48. Ma, C., Guo, Y., Li, D., Zong, J., Ji, X., Liu, C.: Molar enthalpy of mixing and refractive indices of choline chloride-based deep eutectic solvents with water. J. Chem. Thermodyn. 105, 30–36 (2017)

    Article  CAS  Google Scholar 

  49. Harifi-Mood, A.R., Buchner, R.: Density, viscosity, and conductivity of choline chloride + ethylene glycol as a deep eutectic solvent and its binary mixtures with dimethyl sulfoxide. J. Mol. Liq. 225, 689–695 (2017)

    Article  CAS  Google Scholar 

  50. Jibril, B., Mjalli, F., Naser, J., Gano, Z.: New tetrapropylammonium bromide-based deep eutectic solvents: synthesis and characterizations. J. Mol. Liq. 199, 462–469 (2014)

    Article  CAS  Google Scholar 

  51. Mjalli, F.S., Naser, J., Jibril, B., Alizadeh, V., Gano, Z.: Tetrabutylammonium chloride based ionic liquid analogues and their physical properties. J. Chem. Eng. Data 59, 2242–2251 (2014)

    Article  CAS  Google Scholar 

  52. Siongco, K.R., Leron, R.B., Li, M.-H.: Densities, refractive indices, and viscosities of N,N-diethylethanol ammonium chloride–glycerol or –ethylene glycol deep eutectic solvents and their aqueous solutions. J. Chem. Thermodyn. 65, 65–72 (2013)

    Article  CAS  Google Scholar 

  53. Chen, Z., Ludwig, M., Warr, G.G., Atkin, R.: Effect of cation alkyl chain length on surface forces and physical properties in deep eutectic solvents. J. Colloid Interface Sci. 494, 373–379 (2017)

    Article  CAS  PubMed  Google Scholar 

  54. Ghaedi, H., Ayoub, M., Sufian, S., Hailegiorgis, S.M., Murshid, G., Khan, S.N.: Thermal stability analysis, experimental conductivity and pH of phosphonium-based deep eutectic solvents and their prediction by a new empirical equation. J. Chem. Thermodyn. 116, 50–60 (2018)

    Article  CAS  Google Scholar 

  55. Wenjun, C., Zhimin, X., **fang, W., **gyun, J., **nhui, Z., Tiancheng, M.: Investigation on the thermal stability of deep eutectic solvents. Acta Physico-Chimica Sinca 34, 904–911 (2017)

    Google Scholar 

  56. Cao, Y., Mu, T.: Comprehensive investigation on the thermal stability of 66 ionic liquids by thermogravimetric analysis. Ind. Eng. Chem. Res. 53, 8651–8664 (2014)

    Article  CAS  Google Scholar 

  57. Chen, Z., Greaves, T.L., Warr, G.G., Atkin, R.: Mixing cations with different alkyl chain lengths markedly depresses the melting point in deep eutectic solvents formed from alkylammonium bromide salts and urea. Chem. Comm. 53, 2375–2377 (2017)

    Article  CAS  PubMed  Google Scholar 

  58. Shahbaz, K., Mjalli, F., Hashim, M., AlNashef, I.: Using deep eutectic solvents based on methyl triphenyl phosphunium bromide for the removal of glycerol from palm-oil-based biodiesel. Energy Fuels 25, 2671–2678 (2011)

    Article  CAS  Google Scholar 

  59. Klamt, A.: Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena. J. Phys. Chem. 99, 2224–2235 (1995)

    Article  CAS  Google Scholar 

  60. Lin, S.-T., Sandler, S.I.: A Priori phase equilibrium prediction from a segment contribution solvation model. Ind. Eng. Chem. Res. 41, 899–913 (2002)

    Article  CAS  Google Scholar 

  61. Hsieh, C.-M., Sandler, S.I., Lin, S.-T.: Improvements of COSMO-SAC for vapor–liquid and liquid–liquid equilibrium predictions. Fluid Phase Equilib. 297, 90–97 (2010)

    Article  CAS  Google Scholar 

  62. Kundu, D., Banerjee, T.: Multicomponent vapor–liquid–liquid equilibrium prediction using an a priori segment based model. Ind. Eng. Chem. Res. 50, 14090–14096 (2011)

    Article  CAS  Google Scholar 

  63. Xu, J., Toh, C.L., Liu, X., Wang, S., He, C., Lu, X.: Synthesis and self-assembly of donor−spacer−acceptor molecules liquid crystals formed by single-component “complexes” via intermolecular hydrogen-bonding interaction. Macromolecules 38, 1684–1690 (2005)

    Article  CAS  Google Scholar 

  64. Francisco, M., van den Bruinhorst, A., Kroon, M.C.: Low-transition-temperature mixtures (lttms): a new generation of designer solvents. Angew. Chem. Int. Ed. 52, 3074–3085 (2013)

    Article  CAS  Google Scholar 

  65. Tsunashima, K., Sugiya, M.: Physical and electrochemical properties of room temperature ionic liquids based on quaternary phosphonium cations. Electrochem 75, 734–736 (2007)

    Article  CAS  Google Scholar 

  66. Manohar, C., Rabari, D., Kumar, A.A.P., Banerjee, T., Mohanty, K.: Liquid–liquid equilibria studies on ammonium and phosphonium based ionic liquid–aromatic–aliphatic component at T = 298.15 K and p = 1 bar: correlations and a priori predictions. Fluid Phase Equilib. 360, 392–400 (2013)

    Article  CAS  Google Scholar 

  67. Anantharaj, R., Banerjee, T.: Liquid–liquid equilibria for quaternary systems of imidazolium based ionic liquid + thiophene + pyridine + iso-octane at 298.15 K: experiments and quantum chemical predictions. Fluid Phase Equilib. 312, 20–30 (2011)

    Article  CAS  Google Scholar 

  68. Ravilla, U.K., Banerjee, T.: Liquid liquid equilibria of imidazolium based ionic liquid + pyridine + hydrocarbon at 298.15 K: experiments and correlations. Fluid Phase Equilib. 324, 17–27 (2012)

    Article  CAS  Google Scholar 

  69. Sander, A., Rogošić, M., Slivar, A., Žuteg, B.: Separation of hydrocarbons by means of liquid–liquid extraction with deep eutectic solvents. Solvent Extr. Ion Exch. 34, 86–98 (2016)

    Article  CAS  Google Scholar 

  70. Hayes, R., Warr, G.G., Atkin, R.: Structure and nanostructure in ionic liquids. Chem. Rev. 115, 6357–6426 (2015)

    Article  CAS  PubMed  Google Scholar 

  71. Gilmore, M., Moura, L.M., Turner, A.H., Swadźba-Kwaśny, M., Callear, S.K., McCune, J.A., Scherman, O.A., Holbrey, J.D.: a comparison of choline: urea and choline: oxalic acid deep eutectic solvents at 338 K. J. Chem. Phys. 148, 193823 (2018)

    Article  CAS  PubMed  Google Scholar 

  72. Stefanovic, R., Ludwig, M., Webber, G.B., Atkin, R., Page, A.J.: Nanostructure, hydrogen bonding and rheology in choline chloride deep eutectic solvents as a function of the hydrogen bond donor. Phys. Chem. Chem. Phys. 19, 3297–3306 (2017)

    Article  CAS  PubMed  Google Scholar 

  73. Hammond, O.S., Bowron, D.T., Jackson, A.J., Arnold, T., Sanchez-Fernandez, A., Tsapatsaris, N., Garcia Sakai, V., Edler, K.J.: Resilience of malic acid natural deep eutectic solvent nanostructure to solidification and hydration. J. Phys. Chem. B 121, 7473–7483 (2017)

    Article  CAS  PubMed  Google Scholar 

  74. Hammond, O.S., Bowron, D.T., Edler, K.J.: Liquid structure of the choline chloride–urea deep eutectic solvent (reline) from neutron diffraction and atomistic modelling. Green Chem. 18, 2736–2744 (2016)

    Article  CAS  Google Scholar 

  75. Araujo, C., Coutinho, J., Nolasco, M., Parker, S., Ribeiro-Claro, P., Rudić, S., Soares, B., Vaz, P.: Inelastic neutron scattering study of reline: shedding light on the hydrogen bonding network of deep eutectic solvents. Phys. Chem. Chem. Phys. 19, 17998–18009 (2017)

    Article  CAS  PubMed  Google Scholar 

  76. Hardacre, C., Holbrey, J.D., Nieuwenhuyzen, M., Youngs, T.G.: Structure and solvation in ionic liquids. Acc. Chem. Res. 40, 1146–1155 (2007)

    Article  CAS  PubMed  Google Scholar 

  77. Batista, M.L., Passos, H., Henriques, B.J., Maginn, E.J., Pinho, S.P., Freire, M.G., Gomes, J.R., Coutinho, J.A.: Why are some cyano-based ionic liquids better glucose solvents than water? Phys. Chem. Chem. Phys. 18, 18958–18970 (2016)

    Article  CAS  PubMed  Google Scholar 

  78. Wick, C.D., Xantheas, S.S.: Computational investigation of the first solvation shell structure of interfacial and bulk aqueous chloride and iodide ions. J. Phys. Chem. B 113, 4141–4146 (2008)

    Article  CAS  Google Scholar 

  79. McDonald, S., Murphy, T., Imberti, S., Warr, G.G., Atkin, R.: Amphiphilically nanostructured deep eutectic solvents. J. Phys. Chem. Lett. 9, 3922–3927 (2018)

    Article  CAS  PubMed  Google Scholar 

  80. Kohagen, M., Brehm, M., Lingscheid, Y., Giernoth, R., Sangoro, J., Kremer, F., Naumov, S., Iacob, C., Kärger, J.R., Valiullin, R.: How hydrogen bonds influence the mobility of imidazolium-based ionic liquids. A combined theoretical and experimental study of 1-n-butyl-3-methylimidazolium bromide. J. Phys. Chem. B 115, 15280–15288 (2011)

    Article  CAS  PubMed  Google Scholar 

  81. Méndez-Morales, T., Carrete, J., Cabeza, O., Gallego, L.J., Varela, L.M.: Molecular dynamics simulation of the structure and dynamics of water–1-alkyl-3-methylimidazolium ionic liquid mixtures. J. Phys. Chem. B 115, 6995–7008 (2011)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowlegdements

The authors are grateful to the Department of Science and Technology (DST), Government of India for their support through INSPIRE fellowship program via Grant No. DST/INSPIRE Fellowship/2015/IF150175. The authors also acknowledge support from IIT Guwahati for the computational time in the Param Ishan supercomputer at IIT Guwahati for providing us necessary computational time for MD simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamal Banerjee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 553 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naik, P.K., Paul, S. & Banerjee, T. Physiochemical Properties and Molecular Dynamics Simulations of Phosphonium and Ammonium Based Deep Eutectic Solvents. J Solution Chem 48, 1046–1065 (2019). https://doi.org/10.1007/s10953-019-00903-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-019-00903-0

Keywords

Navigation