Log in

Volumetric Properties of Aqueous Solutions of L-Glutamic Acid and Magnesium-L-Glutamate

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Densities of aqueous solutions of L-glutamic acid and magnesium-L-glutamate were determined from T=288.15 to 333.15 K at 5 K temperature intervals. The measured densities were used to evaluate the apparent molar volumes, V 2,φ (m,T), the cubic expansion coefficients, α(m,T), and the changes of isobaric heat capacities with respect to pressure, ( C p / p) T,m . They were qualitatively correlated with changes in the structure of water that occur when L-glutamic acid or magnesium-L-glutamate are present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Manzurola, E., Apelblat, A.: Apparent molar volumes of citric, tartaric, malic, succinic, maleic, and acetic acids in water at 298.15 K. J. Chem. Thermodyn. 17, 579–584 (1989)

    Article  Google Scholar 

  2. Apelblat, A., Manzurola, E.: Solubility of ascorbic, 2-furancarboxylic, glutaric, pimelic, salicylic, and o-phthalic acids in water from 279.15 to 342.15 K, and apparent molar volumes of ascorbic, glutaric and pimelic acids in water at 298.15 K. J. Chem. Thermodyn. 21, 1005–1008 (1989)

    Article  CAS  Google Scholar 

  3. Apelblat, A., Manzurola, E.: Apparent molar volumes of organic acids and salts in water at 298.15 K. Fluid Phase Equil. 60, 157–171 (1990)

    Article  CAS  Google Scholar 

  4. Apelblat, A., Manzurola, E.: Volumetric properties of aqueous solutions of disodium tartrate and L-dipotassium tartrate at temperatures from 278.15 K to 343.15 K and molalities of (0.1, 0.5 and 1.0) mol⋅kg−1. J. Chem. Thermodyn. 33, 1157–1168 (2001)

    Article  CAS  Google Scholar 

  5. Orekhova, Z., Ben-Hamo, M., Manzurola, E., Apelblat, A.: Electrical conductance and volumetric studies of aqueous solutions of nicotinic acid. J. Solution Chem. 34, 687–700 (2005)

    Article  CAS  Google Scholar 

  6. Orekhova, Z., Sembira, Y., Manzurola, E., Apelblat, A.: Electrical conductance and volumetric studies of aqueous solutions of DL-pyroglutamic acid. J. Solution Chem. 34, 853–867 (2005)

    Article  CAS  Google Scholar 

  7. Apelblat, A., Manzurola, E.: Vapour pressure and volumetric studies in aqueous solutions with ascorbate ions. J. Mol. Liquids 131–132, 7–16 (2007)

    Article  Google Scholar 

  8. Greenstein, J.P., Winitz, M.: Chemistry of the Amino Acids. Wiley, New York (1961)

    Google Scholar 

  9. Edsall, J.T., Blanchard, M.H.: The activity ratio of zwitterions and uncharged molecules in ampholyte solutions. The dissociation constants of amino acid esters. J. Am. Chem. Soc. 55, 2353–2337 (1933)

    Article  Google Scholar 

  10. Dalton, J.B., Schmidt, C.L.A.: The solubilities of certain amino acids in water, the densities of their solutions at twenty-five degrees, and the calculated heats of solution and partial molal volumes. J. Biol. Chem. 103, 549–578 (1933)

    CAS  Google Scholar 

  11. Millero, F.J., Surdo, A.L., Shin, C.: The apparent molal volumes and adiabatic compressibilities of aqueous amino acids at 25 °C. J. Phys. Chem. 82, 792–784 (1978)

    Article  Google Scholar 

  12. Mishra, A.K., Ahluwalia, J.C.: Apparent molar volumes of amino acids, and peptides in aqueous solutions. J. Phys. Chem. 88, 86–92 (1984)

    Article  CAS  Google Scholar 

  13. Rao, M.V.R., Atreyi, M., Rejeswari, M.R.: Partial molar volumes of α−amino acids with ionogenic side chains in water. J. Phys. Chem. 88, 3129–3131 (1984)

    Article  CAS  Google Scholar 

  14. Jolicoeur, C., Riedl, B., Desrochers, D., Lemelin, L.L., Zamojska, R., Enea, O.: Solvation of amino acid residues in water and urea-water mixtures: Volumes and heat capacities of 20 amino acids in water and 8 molar urea at 25 °C. J. Solution Chem. 15, 109–128 (1986)

    Article  CAS  Google Scholar 

  15. Rao, M.V.R., Atreyi, M., Rejeswari, M.R.: Specific interactions between amino acid side chains—a partial molar volume study. Can. J. Chem. 66, 487–490 (1988)

    Article  CAS  Google Scholar 

  16. Hakin, A.W., Duke, M.M., Marty, J.L., Preuss, K.E.: Some thermodynamic properties of aqueous amino acid systems at 288.15, 298.15, 313.15 and 328.15 K: Group additivity analysis of standard-state volumes and heat capacities. J. Chem. Soc., Faraday Trans. 90, 2027–2035 (1994)

    Article  CAS  Google Scholar 

  17. Yasuda, Y., Tochio, N., Sakurai, M., Nitta, K.: Partial molar volumes and isentropic compressibilities of amino acids in dilute aqueous solutions. J. Chem. Eng. Data 43, 205–214 (1998)

    Article  CAS  Google Scholar 

  18. Banipal, T.S., Kapoor, P.: Partial molal volumes and expansibilities of some amino acids in aqueous solutions. J. Indian Chem. Soc. 76, 431–437 (1999)

    CAS  Google Scholar 

  19. Häckel, M., Hinz, H.J., Hedwig, G.R.: Partial molar volumes of proteins: amino acid side-chain contributions derived from the partial molar volumes of some tripeptides over the temperature range 10–90 °C. Biophys. Chem. 82, 35–50 (1999)

    Article  Google Scholar 

  20. Ziemer, S.P., Woolley, E.M.: Thermodynamics of the first and second proton dissociations from aqueous L-aspartic acid and L-glutamic acid at temperatures from (278.15 to 393.15) K and at the pressure 0.35 MPa; Apparent molar heat capacities and apparent molar volumes of zwitterionic, protonated cationic and deprotonated anionic forms at molalities from (0.002 to 1.0) mol⋅kg−1. J. Chem. Thermodyn. 39, 645–666 (2007)

    Article  CAS  Google Scholar 

  21. Apelblat, A., Manzurola, E.: Solubilities of L-aspartic, DL-aspartic, DL-glutamic, p-hydroxybenzoic, o-anisic, p-anisic, and itaconic acids in water from 278 K to 345 K. J. Chem. Thermodyn. 29, 1527–1533 (1997)

    Article  CAS  Google Scholar 

  22. Yalkovsky, S.H., He, Y.: Aqueous Solubility Data. CRC Press, Boca Raton (2003)

    Google Scholar 

  23. Apelblat, A., Manzurola, E.: Volumetric properties of water, and solutions of sodium chloride and potassium chloride at temperatures from T=277.15 K to 343.15 K at molalities of (0.1, 0.5 and 1.0) mol⋅kg−1. J. Chem. Thermodyn. 31, 869–893 (1999)

    Article  CAS  Google Scholar 

  24. Apelblat, A., Manzurola, E.: Volumetric properties of aqueous solutions of lithium chloride from 278.15 K to 338.15 K and molalities of (0.1, 0.5 and 1.0) mol⋅kg−1. J. Chem. Thermodyn. 33, 1133–1155 (2001)

    Article  CAS  Google Scholar 

  25. Hepler, L.G.: Thermal expansion and structure in water and aqueous solutions. Can. J. Chem. 47, 4613–4617 (1969)

    Article  CAS  Google Scholar 

  26. Apelblat, A., Manzurola, E.: Volumetric and thermal properties of some aqueous electrolyte solutions. Part 5. Potassium bromide and potassium iodide 0.1, 0.5, and 1.0 mol⋅kg−1 solutions at temperatures from 278.15 K to 338.15. J. Mol. Liquids 118, 77–88 (2005)

    Article  CAS  Google Scholar 

  27. Millero, F.J.: The partial molar volumes of electrolytes in aqueous solutions. In: Horne, R.A. (ed.) Water and Aqueous Solutions. Wiley-Interscience, New York (1972)

    Google Scholar 

  28. Kavanau, J.L.: Water and Solute-Water Interactions. Holden-Day, San Francisco (1964)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Apelblat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sembira-Nahum, Y., Apelblat, A. & Manzurola, E. Volumetric Properties of Aqueous Solutions of L-Glutamic Acid and Magnesium-L-Glutamate. J Solution Chem 37, 391–401 (2008). https://doi.org/10.1007/s10953-007-9245-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-007-9245-z

Keywords

Navigation