Log in

Insight into the Intra and Inter-wire Magnetic Interactions of Co Nanowire Arrays by FORC Diagrams

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Understanding and controlling the magnetic behavior of nanowire (NW) arrays is a fundamental step for develo** novel future-generation devices. The current research investigated the role of copper pre-plating thickness on the structural and magnetic interactions of cobalt NW arrays. The NWs were grown in the anodic aluminum oxide (AAO) templates with a nanopore diameter of 30 nm by using a pulse electrodeposition (PED). The thickness of Cu pre-plating varied by adjusting the amount of electrodeposition (ED) Coulomb charge to about 0.03–0.7 C. The intensity of the Co-hcp peaks in the X-ray diffraction (XRD) pattern changes with the increase of Cu pre-plating, which can be related to ion mobility and growth kinetics during the ED process. The hysteresis curves indicate that effective magnetic anisotropy fields (\({\text{H}}_{\text{A}}^{\text{eff}})\) increase from 7200 to 11,000 Oe with increasing Cu thickness. The coercivity of Co nanowire arrays without Cu pre-plating was 1170 Oe and rose to 1870 Oe for optimum Cu thickness with 0.3 C pre-plating. The switching field distribution (SFD) extracted from hysteresis curves agrees well with the squareness ratio. Also, the SFD indicates an exchange coupling between the interfaces of the magnetic phases in the optimum sample. The regions formed in the first-order reversal curve (FORC) diagram showed crystalline features and magnetic phase interactions between the intra and inter-wire. Further, the FORC analysis showed the same crystalline features as those obtained from the XRD structural analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data are contained within the article that origin data are available upon request from the corresponding author.

References

  1. Zamani Kouhpanji, M.R., et al.: Selective detection of cancer cells using magnetic nanowires. ACS Appl. Mater. Interfaces 13(18), 21060–21066 (2021)

    Article  Google Scholar 

  2. Andrade, V.M., et al.: Bilayered soft/hard magnetic nanowires as in-line writing heads. Mater. Des. 222, 111024 (2022)

    Article  Google Scholar 

  3. Bran, C., et al.: Magnetization ratchet in cylindrical nanowires. ACS Nano 12(6), 5932–5939 (2018)

    Article  Google Scholar 

  4. Mendes, R., Santos, J., Barreto, F.S.: Magnetic properties of a hexagonal nanowire system with mixed spin: application of the stochastic Glauber dynamics with mean-field approximation. J. Phys. Chem. Solids 170, 110896 (2022)

    Article  Google Scholar 

  5. Chan, T.-C., et al.: Growth of large-scale nanotwinned Cu nanowire arrays from anodic aluminum oxide membrane by electrochemical deposition process: controllable nanotwin density and growth orientation with enhanced electrical endurance performance. Nanoscale 6(13), 7332–7338 (2014)

    Article  ADS  Google Scholar 

  6. Huang, C., et al.: Improved microstructure and magnetic properties of iron–cobalt nanowire via an ac electrodeposition with a multistep voltage. Mater. Lett. 64(22), 2465–2467 (2010)

    Article  Google Scholar 

  7. Nielsch, K., et al.: Self-ordering regimes of porous alumina: the 10 porosity rule. Nano Lett. 2(7), 677–680 (2002)

    Article  ADS  Google Scholar 

  8. Wang, Z., Brust, M.: Fabrication of nanostructure via self-assembly of nanowires within the AAO template. Nanoscale Res. Lett. 2, 34–39 (2007)

    Article  ADS  Google Scholar 

  9. Ghaffari, M., Ramazani, A., Kashi, M.A.: Improvement in the microstructure and magnetic properties in arrays of dc pulse electrodeposited Co nanowires induced by Cu pre-plating. J. Phys. D Appl. Phys. 46(29), 295002 (2013)

    Article  Google Scholar 

  10. Arefpour, M., et al.: Electrochemical pore filling strategy for controlled growth of magnetic and metallic nanowire arrays with large area uniformity. Nanotechnology 27(27), 275605 (2016)

    Article  Google Scholar 

  11. Akhtarianfar, S., et al.: The effect of barrier layer conditions on the electrodeposition efficiency and magnetic properties of Fe nanowire arrays. Appl. Phys. A 124, 1–10 (2018)

    Article  ADS  Google Scholar 

  12. Ahmadzadeh, M., et al.: Electrodeposition efficiency of Ni in the fabrication of highly ordered nanowire arrays: the roles of Cu pre-plating and barrier layer temperature. Appl. Surf. Sci. 356, 687–694 (2015)

    Article  ADS  Google Scholar 

  13. Yong, R., et al.: The effect of substrate on magnetic properties of Co/Cu multilayer nanowire arrays. Chin. Phys. B 18(8), 3573 (2009)

    Article  ADS  Google Scholar 

  14. Huang, X., et al.: Initial growth of single-crystalline nanowires: from 3D nucleation to 2D growth. Nanoscale Res. Lett. 5, 1057–1062 (2010)

    Article  ADS  Google Scholar 

  15. Huang, X., et al.: Orientation-controlled synthesis and ferromagnetism of single crystalline Co nanowire arrays. J. Phys. Chem. C 112(5), 1468–1472 (2008)

    Article  Google Scholar 

  16. Alirezaei, B., et al.: Magnetic properties and reversal modes of electrodeposited CoCr nanowire arrays with different diameters. J. Supercond. Novel Magn. 34(12), 3199–3208 (2021)

    Article  Google Scholar 

  17. Esfahani, M.N., et al.: Fabrication and magnetic characteristics of electrodeposited FeCr nanowire arrays. J. Magn. Magn. Mater. 537, 168218 (2021)

    Article  Google Scholar 

  18. Sousa, C., et al.: Precise control of the filling stages in branched nanopores. J. Mater. Chem. 22(7), 3110–3116 (2012)

    Article  Google Scholar 

  19. Sousa, C.T., et al.: A versatile synthesis method of dendrites-free segmented nanowires with a precise size control. Nanoscale Res. Lett. 7(1), 1–7 (2012)

    Article  Google Scholar 

  20. Schloerb, H., et al.: Magnetic nanowires by electrodeposition within templates. Phys. Status Solidi B 247(10), 2364–2379 (2010)

    Article  ADS  Google Scholar 

  21. Wang, M., et al.: Growth orientation control of Co nanowires fabricated by electrochemical deposition using porous alumina templates. Cryst. Growth Des. 18(1), 479–487 (2018)

    Article  ADS  Google Scholar 

  22. Sharma, G., Pishko, M.V., Grimes, C.A.: Fabrication of metallic nanowire arrays by electrodeposition into nanoporous alumina membranes: effect of barrier layer. J. Mater. Sci. 42, 4738–4744 (2007)

    Article  ADS  Google Scholar 

  23. Jafari-Khamse, E., Kashi, M.A., Ramazani, A.: Angular dependence of interactions in polycrystalline Co nanowire arrays. Mater. Chem. Phys. 159, 128–138 (2015)

    Article  Google Scholar 

  24. Bottoni, G., Candolfo, D., Cecchetti, A.: Distribution of anisotropy field in recording media deduced from the hysteresis curve. J. Appl. Phys. 81(8), 3794–3796 (1997)

    Article  ADS  Google Scholar 

  25. Salem, M.S., et al.: Magnetic characterization of nickel-rich NiFe nanowires grown by pulsed electrodeposition. J. Mater. Chem. 22(17), 8549–8557 (2012)

    Article  Google Scholar 

  26. Vivas, L., et al.: Magnetic anisotropy in CoNi nanowire arrays: analytical calculations and experiments. Phys. Rev. B 85(3), 035439 (2012)

    Article  ADS  Google Scholar 

  27. García, J., et al.: Magnetization reversal dependence on effective magnetic anisotropy in electroplated Co–Cu nanowire arrays. J. Mater. Chem. C 3(18), 4688–4697 (2015)

    Article  Google Scholar 

  28. Hauet, T., et al.: Reversal mechanism, switching field distribution, and dipolar frustrations in Co/Pt bit pattern media based on auto-assembled anodic alumina hexagonal nanobump arrays. Phys. Rev. B 89(17), 174421 (2014)

    Article  ADS  Google Scholar 

  29. Lobo Guerrero, A., et al.: Crystalline texture of cobalt nanowire arrays probed by the switching field distribution and FORC diagrams. J. Phys. D Appl. Phys. 56(6), 065003 (2023)

    Article  ADS  Google Scholar 

  30. Kashi, M.A., Ghaffari, M., Torshizi, F.: Structural and magnetic tunability of Co/Cu multilayer nanowires induced by electrolyte acidity and spacer layer thickness. J. Alloy. Compd. 820, 153087 (2020)

    Article  Google Scholar 

  31. Panagiotopoulos, I.: A simple approach to the First Order Reversal Curves (FORC) of two-phase magnetic systems. J. Magn. Magn. Mater. 323(16), 2148–2153 (2011)

    Article  ADS  Google Scholar 

  32. Gilbert, D.A., et al.: Quantitative decoding of interactions in tunable nanomagnet arrays using first order reversal curves. Sci. Rep. 4(1), 4204 (2014)

    Article  Google Scholar 

Download references

Funding

Iran National Science Foundation, 95841951.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Paimozd.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alicheraghi, L., Ghasemi, A., Paimozd, E. et al. Insight into the Intra and Inter-wire Magnetic Interactions of Co Nanowire Arrays by FORC Diagrams. J Supercond Nov Magn (2024). https://doi.org/10.1007/s10948-024-06736-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10948-024-06736-3

Keywords

Navigation