Log in

Preparation and Magnetic Properties of BSCCO Superconducting Nanofibers by Electrospinning and Solution Blowing Spinning

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this work, we compared Bi2Sr2CaCu2O8+θ (BSCCO) superconducting nanofibers prepared by electrospinning (ES) and solution blowing spinning (SBS) techniques for the first time. The differences in microstructure and magnetic properties of BSCCO superconducting fibers prepared by ES and SBS were investigated. The thickness of the ES-BSCCO nanofibers was more uniform than that of the SBS-BSCCO nanofibers. In addition, the superconducting transition temperature of superconducting SBS-BSCCO nanofibers was only 73.5 K due to the weak connection of grains, which was lower than 82.5 K of the ES-BSCCO sample. Further studies showed the area enclosed by the hysteresis loop, the critical current density, and the intensity of the pinning force of SBS-BSCCO fibers were all smaller than those of the ES-BSCCO sample. Finally, we found that the pinning mechanism of these two BSCCO samples could be ascribed to the activation of the point-pinning mechanism and surface-pinning mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li, D., **a, Y.N.: Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett. 4, 933–938 (2004)

    Article  ADS  Google Scholar 

  2. Vakifahmetoglu, C.: Fabrication and properties of ceramic 1D nanostructures from preceramic polymers: a review. Adv. Appl. Ceram. 110, 188–204 (2011)

    Article  Google Scholar 

  3. Kim, H.B., Boysen, D.A., Newhouse, J.M., Spatocco, B.L., Chung, B., Burke, P.J., Bradwell, D.J., Jiang, K., Tomaszowska, A.A., Wang, K.L., Wei, W.F., Ortiz, L.A., Barriga, S.A., Poizeau, S.M., Sadoway, D.R.: Liquid metal batteries: past, present, and future. Chem. Rev. 113, 2075–2099 (2013)

    Article  Google Scholar 

  4. Sui, J.X., Wang, X.X., Zhang, X.T., Han, W.P., Song, C., Yu, J., Chen, J.Q., Liu, H.H., Yuan, F., Long, Y.Z.: Variable-range hop** conduction with positive and negative magnetoresistance transformation in reduced graphene oxide mesostructures. J. Magn. Magn. Mater. 498, 166107 (2020)

    Article  Google Scholar 

  5. Zhu, D.X., Xu, Y., Wang, X.X., Sui, J.X., Liu, Q., Song, C., Yu, J., Wu, J.P., Long, Y.Z.: Preparation of indium oxide by electrospinning and its electromagnetic properties at low temperature. J Magn Magn. 501, 166489 (2020)

  6. Liu, Q., Wang, X.X., Song, C., Sui, J.X., Yan, X., Zhang, J.C., Zhao, H.S., Yuan, F., Long, Y.Z.: Magnetic properties of La doped SmFeO3. J. Magn. Magn. Mater. 469, 76–80 (2019)

  7. Shen, Z.J., Wang, Y., Chen, W.P., Fei, L.F., Li, K., Lai, H.L., Bing, L.N.: Electrospinning preparation and high-temperature superconductivity of YBa2Cu3O7-x nanotubes. J. Mater. Sci. 48, 3985–3990 (2013)

    Article  ADS  Google Scholar 

  8. Sui, J.X., Wang, X.X., Song, C., Liu, Q., Yuan, F., Long, Y.Z.: Preparation and low-temperature electrical and magnetic properties of La0.33Pr0.34Ca0.33MnO3 nanofibers via electrospinning. J. Magn. Magn. 467, 74–81 (2018)

  9. Nie, G.Z., Zhao, X.W., Jiang, J.M., Luan, Y.X., Shi, J.L., Liu, J.M., Kou, Z.K., Wang, J., Long, Y.Z.: Flexible supercapacitor of high areal performance with vanadium/cobalt oxides on carbon nanofibers as a binder-free membrane electrode. Chem. Eng. J. 402, 126294 (2020)

    Article  Google Scholar 

  10. Xu, Y., Zhu, J.W., Fang, J.B., Li, X., Yu, M., Long, Y.Z.: electrospun high-thermal-resistant inorganic composite nonwoven as lithium-ion battery separator. J. Nanomater. 2020, 1–10 (2020)

    Google Scholar 

  11. Wang, X.X., **ang, H.F., Song, C., Zhu, D.Y., Sui, J.X., Liu, Q., Long, Y.Z.: Highly efficient transparent air filter prepared by collecting-electrode-free bipolar electrospinning apparatus. J. Hazard. Mater. 385, 121535 (2020)

    Article  Google Scholar 

  12. Li, Q.H., Dong, M., Li, R., Cui, Y.Q., **e, G.X., Wang, X.X., Long, Y.Z.: Enhancement of Cr(VI) removal efficiency via adsorption/photocatalysis synergy using electrospun chitosan/g-C3N4/TiO2 nanofibers. Carbohyd. Polym. 253, 117200 (2021)

    Article  Google Scholar 

  13. Gao, Y., **ang, H.F., Wang, X.X., Yan, K., Liu, Q., Li, X., Liu, R.-Q., Yu, M., Long, Y.Z.: A portable solution blow spinning device for minimally invasive surgery hemostasis. Chem. Eng. J. 387, 124052 (2020)

    Article  Google Scholar 

  14. Zhang, J., Liu, C.L., Liu, J.J., Bai, X.H., Cao, Z.K., Yang, J., Yu, M., Ramakrishna, S., Long, Y.Z.: Eluting mode of photodynamic nanofibers without photosensitizer leakage for one-stop treatment of outdoor hemostasis and sterilizing superbacteria. Nanoscale. 13, 6105–6116 (2021)

    Article  Google Scholar 

  15. Ma, K., Islamoglu, T., Chen, Z., Li, P., Wasson, M.C., Chen, Y., Wang, Y., Peterson, G.W., **n, J.H., Farha, O.K.: Scalable and template-free aqueous synthesis of zirconium-based metal-organic framework coating on textile fiber. J. Am. Chem. Soc. 141, 15626–15633 (2019)

    Article  Google Scholar 

  16. He, B., Tian, L., Li, J., Pan, Z.J.: Effect of hot-stretching on morphology and mechanical properties of electrospun PMIA nanofibers. Fibers Polym. 14, 405–408 (2013)

    Article  Google Scholar 

  17. Tan, E.P.S., Lim, C.T.: Mechanical characterization of nanofibers – a review. Compos. Sci. Technol. 66, 1102–1111 (2006)

    Article  Google Scholar 

  18. Sun, B., Long, Y.Z., Zhang, H.D., Li, M.M., Duvail, J.L., Jiang, X.Y., Yin, H.L.: Advances in three-dimensional nanofibrous macrostructures via electrospinning. Prog. Polym. Sci. 39, 862–890 (2014)

    Article  Google Scholar 

  19. Li, M.M., Long, Y.Z., Yang, D., Sun, J., Yin, H., Zhao, Z., Kong, W., Jiang, X., Fan, Z.: Fabrication of one dimensional superfine polymer fibers by double-spinning. J. Mater. Chem. 21, 13159 (2011)

    Article  Google Scholar 

  20. Long, Y.Z., Yu, M., Sun, B., Gu, C.Z., Fan, Z.: Recent advances in large-scale assembly of semiconducting inorganic nanowires and nanofibers for electronics, sensors and photovoltaics. Chem. Soc. Rev. 41, 4560–4580 (2012)

    Article  Google Scholar 

  21. **, Y., Yang, D., Kang, D., Jiang, X.: Fabrication of necklace-like structures via electrospinning. Langmuir. 26, 1186–1190 (2010)

    Article  Google Scholar 

  22. Gao, Y., Zhang, J., Su, Y., Wang, H., Wang, X.X., Huang, L.P., Yu, M., Ramakrishna, S., Long, Y.Z.: Recent progress and challenges in solution blow spinning. Mater. Horiz. 8, 426–446 (2021)

    Article  Google Scholar 

  23. Zeng, X.L., Koblischka, M.R., Laurent, F., Karwoth, T., Koblischka-Veneva, A., Hartmann, U., Chang, C., Kumar, P., Eibl, O.: Characterization of electrospun Bi2Sr2CaCu2O8+δ nanowires with reduced preparation temperature. IEEE Trans. Appl. Supercond. 28, 1–5 (2018)

    Article  Google Scholar 

  24. Duarte, E.A., Quintero, P.A., Meisel, M.W., Nino, J.C.: Electrospinning synthesis of superconducting BSCCO nanowires. Physica C. 495, 109–113 (2013)

    Article  ADS  Google Scholar 

  25. Koblischka, M.R., Zeng, X.L., Karwoth, T., Hauet, T., Hartmann, U.: Magnetic properties of electrospun non-woven superconducting fabrics. AIP Adv. 6, 035115 (2016)

    Article  ADS  Google Scholar 

  26. Koblischka, M.R., Zeng, X.L., Karwoth, T., Hauet, T., Hartmann, U.: Transport and magnetic measurements on Bi2Sr2CaCu2O8 nanowire networks prepared via electrospinning. IEEE Trans. Appl. Supercond. 26, 1–5 (2016)

    Article  Google Scholar 

  27. Zeng, X.L., Karwoth, T., Koblischka, M.R., Hartmann, U., Gokhfeld, D., Chang, C., Hauet, T.: Analysis of magnetization loops of electrospun nonwoven superconducting fabrics. Phys. Rev. Mater. 1, 044892 (2017)

  28. Cena, C.R., Torsoni, G.B., Zadorosny, L., Malmonge, L.F., Carvalho, C.L., Malmonge, J.A.: BSCCO superconductor micro/nanofibers produced by solution blow-spinning technique. Ceram. Int. 43, 7663–7667 (2017)

    Article  Google Scholar 

  29. EIbl, O.: Special grain boundaries in high-TC Bi2Sr2CaCu2O8+δ. Physica C: Supercond. 168, 239–248 (1990)

  30. Nurbaisyatul, E.S., Azhan, H., Kasim, A., Ibrahim, N.: Effect of CeO2 Nanoparticle on the Structural and Electrical Properties of BSCCO-2223 High Temperature Superconductor. Solid. State. Phenom. 307, 104–109 (2020)

    Article  Google Scholar 

  31. Kır, M.E., Özkurt, B., Aytekin, M.E.: The effect of K-na co-do** on the formation and particle size of Bi-2212 phase. Physica B. 490, 79–85 (2016)

    Article  ADS  Google Scholar 

  32. Özkurt, B.: Enhancement in superconducting transition temperature and Jc values in Na-doped Bi2Sr2Ca1Cu2−xNaxOy superconductors. J. Mater. Sci.: Mater. Electron. 24, 2426–2431 (2013)

    Google Scholar 

  33. Özçelik, B., Gürsul, M., Sotelo, A., Madre, M.A.: Improvement of superconducting properties in Na-doped BSCCO superconductor. J. Mater. Sci.: Mater. Electron. 26, 441–447 (2014)

    Google Scholar 

  34. Nane, O., Özçelik, B., Sotelo, A., Madre, M.A.: Effect of Na substitution on superconducting properties of Bi-2212 ceramics prepared by Sinter-Forged process. J. Eur. Ceram. Soc. 37, 1007–1012 (2017)

    Article  Google Scholar 

  35. Uysal, E., Ozturk, A., Kutuk, S., Çelebi, S.: Effects of Lu do** on the magnetic behavior of YBCO superconductors prepared by MPMG method. J. Supercond. Novel Magn. 27, 1997–2003 (2014)

    Article  Google Scholar 

  36. Özçelik, B., Ergin, I., Depçi, T., Yavuz, H.I., Madre, M.A., Sotelo, A.: Effect of carbon nanotube addition on the superconducting properties of BSCCO samples textured via laser floating zone technique. J. Supercond. Novel Magn. 32, 3135–3141 (2019)

    Article  Google Scholar 

  37. Özçelik, B., Ergin, I., Madre, M.A., Sotelo, A.: Effect of rubidium substitution on the physical and superconducting properties of textured high-Tc BSCCO samples. J. Supercond. Novel Magn. 33, 1285–1292 (2019)

    Article  Google Scholar 

  38. Fallah-Arani, H., Baghshahi, S., Sedghi, A., Riahi-Noori, N.: Enhancement in the performance of BSCCO (Bi-2223) superconductor with functionalized TiO2 nanorod additive. Ceram. Int. 45, 21878–21886 (2019)

    Article  Google Scholar 

  39. Shalaby, M.S., Hamed, M.H., Yousif, N.M., Hashem, H.M.: The impact of the addition of Bi2Te3 nanoparticles on the structural and the magnetic properties of the Bi-2223 high-Tc superconductor. Ceram. Int. 47, 25236–25248 (2021)

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (51973100), the National Key Research Development Project (2019YFC0121402), and the State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University (RZ2000003334 and ZDKT202108).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen-Peng Han or Yun-Ze Long.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YR., Qiu, LP., Gao, SL. et al. Preparation and Magnetic Properties of BSCCO Superconducting Nanofibers by Electrospinning and Solution Blowing Spinning. J Supercond Nov Magn 35, 2755–2763 (2022). https://doi.org/10.1007/s10948-022-06314-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06314-5

Keywords

Navigation